
Building Intrusion Tolerant Applications�

Thomas Wu Michael Malkin Dan Boneh
y

tjw@cs.stanford.edu mikeym@stanford.edu dabo@cs.stanford.edu

Abstract

The ITTC project (Intrusion Tolerance via Thresh-
old Cryptography) provides tools and an infras-
tructure for building intrusion tolerant applications.
Rather than prevent intrusions or detect them after
the fact, the ITTC system ensures that the compro-
mise of a few system components does not compro-
mise sensitive security information. To do so we pro-
tect cryptographic keys by distributing them across
a few servers. The keys are never reconstructed at
a single location. Our designs are intended to sim-
plify the integration of ITTC into existing applica-
tions. We give examples of embedding ITTC into
the Apache web server and into a Certi�cation Au-
thority (CA). Performance measurements on both
the modi�ed web server and the modi�ed CA show
that the architecture works and performs well.

1 Introduction

To combat intrusions into a networked system one
often installs intrusion detection software to monitor
system behavior. Whenever an \irregular" behavior
is observed the software noti�es an administrator.
In this paper we study a complementary approach
we call intrusion tolerance. Rather than prevent or
detect intrusions after the fact, we provide tools that
limit the amount of damage an intruder can cause.
Our goal is to ensure that an attacker who pene-
trates a few system components cannot compromise
total system security. To defeat our system an at-
tacker must either penetrate multiple components
in a short amount of time or frequently penetrate a
certain component. Either way such large scale at-
tacks are much easier to detect than single isolated
attacks.

To describe our approach we consider a web server
as an example. To enable secure connections to the

�Project URL: http://www.stanford.edu/�dabo/ITTC
ySupported by darpa contract #F30602-97-C-0326.

server one often stores a secret key on the server.
Typically the key is used during SSL session key
negotiation. An attacker who penetrates the server
can expose the private key and can then either mas-
querade as the server or eavesdrop on connections
to the server. Hence, in the case of a bank's web
server a single intrusion could result in a compro-
mise of sensitive �nancial data. In contrast, our
approach splits the web server into a small number
of components so that a single intrusion does not
expose any information about the server's key. Our
approach can also be used to safeguard a Certi�cate
Authority's (CA) private key. By splitting the CA
into a number of components we can ensure that
penetration of a small number of components does
not compromise the CA's key.

We protect an application's private key (e.g. a web
server or a CA) by sharing the key among a num-
ber of share servers. An attacker who breaks into
a small number of share servers cannot expose the
private key. Our main design principle is that long
term security information should never be located
in a single location. Hence, there is no single point
of attack at which an attacker can expose critical
security information (such as a CA's private key).
Shamir's secret sharing scheme [14] is a classic ap-
proach for distributing private keys across several
sites. Unfortunately, to use the shared key one must
reconstruct it at a single location. Thus, secret shar-
ing is inappropriate for our purposes. Instead, we
use techniques of Threshold Cryptography [9] to dis-
tribute an application's private key among several
share servers so that the key can be used without
ever reconstructing it.

Our system is designed to be easy to embed into
existing applications. For example, by embedding
our system into the Apache web server we built a
web server whose private key is split across a num-
ber of share servers and is never reconstructed in a
single location. Whenever the web server receives a
request for a secure connection it interacts with the
share servers to apply its private key. As we shall



see in Section 7 the performance penalty for doing
so is small compared to the total time to establish
an SSL connection. Consider again the example of
a bank's system. By placing the share servers in a
secure subnet and ensuring that they only accept
connections from the bank's web servers one can
strengthen the security of the bank's private key.
Furthermore, our share servers can service multiple
web servers. Hence, a bank maintaining dozens of
web servers need not store a private key on each of
them. Instead, the private keys can be stored (in
shared form) on the share servers. This way a small
number of break-ins will not compromise any of the
private keys.

As an additional bene�t, our system provides high
availability of private keys. Even if a few of the share
servers crash (by accident or as a result of an attack)
and all data stored them is lost, the remaining ac-
tive share servers automatically compensate for the
corrupt ones. Furthermore, the system can recover
by redistributing valid shares to the corrupted share
servers.

The paper describes the design and implementation
of our system including the prototype applications
we built. We provide detailed performance mea-
surements on both the modi�ed web server and the
modi�ed CA to show that the architecture works
and performs well.

2 System components

To protect private keys used by applications such as
a web server or a CA, our system distributes shares
of private keys among a number of share servers.
In this section we describe the system components.
We refer to applications using the share servers as
clients. Web servers and CA's are example clients.
Figure 1 illustrates the interaction between the var-
ious components.

Share server The share servers are implemented
as daemons running on di�erent machines. They
hold shares of the private keys belonging to the
clients they serve. These shares reveal no informa-
tion about the client's private key. A share server
can manage multiple keys and serve a large num-
ber of clients. We envision the total number of
share servers being less than ten. Clearly it is desir-
able that an attacker not be able to compromise the
share servers. However, the intrusion tolerant de-

sign of our system ensures that even if a few of the
share servers are penetrated and the secrets stored
on them are exposed or corrupted there is no com-
promise to overall system security. In other words,
an attacker learns nothing from penetrating a few
of the share servers. The system identi�es corrupt
share servers and can be instructed to take appro-
priate action to refresh the secrets stored on them.

Client. A client is any application that makes use
of our client side Threshold LiBrary (the TLB).
When a client connects to the share servers it �rst
authenticates itself as an authorized client. It then
interacts with the share servers to sign a message or
decrypt a given ciphertext using the shared private
key stored on the share servers. One concern is that
an attacker can penetrate a client and expose the
client's authentication key. The attacker can then
masquerade as the client and fool the share server
into applying a shared key. In Section 5.2 we de-
scribe a mechanism for detecting such an attack.
At any rate, the attacker cannot expose the shared
private key (as is the case when the private key is
stored on the client).

Administrator. We provide a central adminis-
tration utility to administer all the share servers.
The administrator utility manages the various keys
stored on the share servers. It can shutdown or sus-
pend the servers if necessary, or instruct the servers
to take appropriate action if some of the servers have
been penetrated. The utility is provided for conve-
nience. If for some reason central administration is
not desired the share servers can be controlled lo-
cally.

Monitor. We built a monitor utility for testing and
demonstrating our system. The monitor is a sin-
gle daemon that collects information from all key
servers and clients. Essentially, the share servers
and clients send data to the monitor (via UDP)
telling it what they are doing at any given moment.
For instance, a client may tell the monitor that it is
asking servers number 1, 2 and 4 to apply key num-
ber 23 to sign a message. A moment later share
servers 1, 2 and 4 will each tell the monitor that
they are applying shares of key number 23 to gener-
ate a signature, and so on. The monitor collects all
this information and sends it to a Java applet that
displays it in a human readable form. During actual
deployment the monitor can be easily disabled by
setting the appropriate switch in the system's con-
�guration �le. The administrator can still monitor
system behavior by viewing each server's log �le.



Share
Server 1

Share
Server 2

Share
Server 3

ServersClients

Admin

Web
Server

T

B
L

T

B
LCA

Figure 1: System components

2.1 Interaction between components

Each share server manages shares of the private
key belonging to its clients. These shares are
stored on disk encrypted using the administrator's
passphrase. When the share server is started (pos-
sibly as part of the system's bootup script) it en-
ters suspended mode. In suspended mode the share
server refuses to accept any connections except a
connection from the administrator. When all share
servers are started, the admin program can be used
to activate the servers by sending the passphrase to
all of them at once. Connections between the admin
program and share servers are always protected by
SSL using mutual authentication. Using a hash of
the administrator's passphrase, each server loads all
shares available to it and enters active mode. The
server is then ready to serve its clients.

In active mode a share server can accept connec-
tions from its clients and the administrator. The
�rst step in any connection to a share server is
mutual authentication and key exchange using SSL.
The second step is an integrity check of the peer
as described in Section 5.2. After a secure link is
established, requests to the share server use the
following protocol:

Request: command hopcodei hdatai
Response: response hstatusi hdatai

The response status is either (1) OK indicating a
successful completion, (2) SUSPENDED indicating

that the share server is in suspended mode, or (3) a
detailed error-code.

To understand the interaction between the system
components we describe some of the opcodes sup-
ported by the share servers.

Connection from client. Each connection from
a client causes the share servers to create a new
thread (up to a speci�ed maximum number of
threads). These threads last as long as the client
keeps open the connection to the share server,
reducing the overhead of repeatedly opening and
closing connections. A client can send a number
of opcodes instructing the servers to apply a
shared key. The interaction that takes place as
a result of these commands is described in Section 4.

sign. Instructs the share server to apply its share
of the private key for the purpose of generat-
ing a signature. The parameters include a di-
gest of the message to be signed. We note that
prior to taking part in the signing protocol de-
scribed in Section 4 the key-servers verify that
the message to be signed follows the PKCS1
format [11].

decrypt. Instructs the share server to apply its
share of the private key for the purpose of de-
crypting a ciphertext.

hash-sign. Instructs the share server to apply its
share of the private key for the purpose of gen-
erating a hash of a signature. The purpose of
this opcode is explained in the next section.



Connection from the admin. Some of the
commands from the administrator include:

shutdown, suspend, activate. Manage share
server modes. Shutdown causes all share server
daemons to exit.

genkey. The admin can instruct the share servers
to generate a new shared key. In our system
private keys are never constructed in a single
location. When an RSA key is generated it is
generated in shared form. This uses a proto-
col due to Boneh and Franklin [3]. We use the
implementation of shared RSA key generation
described in [10]. The shares of the new private
RSA key are stored on the share servers (en-
crypted with the admin password). The new
public key is sent to the admin and is saved on
the admin's machine. Authorized clients can
then connect to the share servers to generate
signatures or decrypt incoming messages using
the new key.

A new public key is usually certi�ed by a CA
before it can be properly used. To obtain a
public key certi�cate for the new key the admin
must generate a certi�cate request to be sent to
a CA. The format of a certi�cate request (speci-
�ed in PKCS10) includes a self signature on the
request. In other words, the newly generated
private key must be used to sign the public key
certi�cate request. The self signature ensures
that the entity requesting the certi�cate has
the corresponding private key. Unfortunately,
in our case, the admin does not have the pri-
vate key. In fact, no one has the private key |
the private key is always stored in shared form
on the share servers. Consequently, to generate
the certi�cate request, the admin must connect
to the share servers as a client and ask them to
sign the request. Once the admin obtains the
self signed request he can forward it to the CA.
The CA will send back the certi�cate. We pro-
vide a utility that enables the admin to gener-
ate a self signed certi�cate request, as described
in Section 6.1.

refresh. Suppose the administrator suspects the
system is under attack and some share servers
are compromised. In this case, the admin can
instruct all share servers to refresh their shares
of the private keys. Refreshing the shares does
not change the private key. It simply gener-
ates a new independent sharing of the private
key. Suppose an attacker obtains the shares
of a private key stored on one of the servers.

Once the admin refreshes the shares of the pri-
vate key the information in the attacker's hands
becomes useless.

Refreshing is also used when shares stored on a
share server are corrupted or lost. Corruption
or loss could happen due to a denial of service
attack or a simple server crash. Refreshing the
shares causes the uncorrupted servers to gener-
ate new valid shares for the corrupted server.
Consequently, the system gracefully tolerates
corruption or loss of a few shares.

3 Key management

We begin by explaining how one shares a private
RSA key among a number of share server so that the
key can be used without ever having to reconstruct
it. We then describe the structure and PEM format
used to store these shared keys.

3.1 Sharing RSA keys

Recall that an RSA private key consists of a modu-
lus N and a secret exponent d. The modulus N is
a product of two large primes, and d is a positive
integer less than N . To decrypt a ciphertext C one
computes Cd mod N . Similarly to sign a message
digest M one computes Md mod N . Hence, both
operations require an exponentiation to the power
d modulo N . Without the secret exponent d it is
believed to be hard to either decrypt ciphertexts or
generate signatures.

We show how a private RSA key can be broken up
into a number of pieces (shares). Each share can
be stored on a separate server and yet the private
key can be used without having to reconstruct the
secret. The basic idea, due to Frankel [6], is to pick
random numbers d1; d2; d3 in the range [�N;N ] so
that d1 + d2 + d3 = d. We then store share di on
share server number i, for i = 1; 2; 3. Note that
an attacker who breaks into any two of the three
servers learns nothing about the private key d. All
three servers must be compromised to obtain d.

When a client wishes to apply the key to sign a
message M it sends M to all three servers. Each
server applies its own share di to obtain Si =
Mdi mod N and sends the result Si back to the
client. The client obtains S1; S2; S3 from the three
servers. It multiplies them to obtain the signature



d = d1 + d2 + d3
d = d4 + d5 + d6

d = d1 + d2
d = d3 + d4

Server 1 Server 2 Server 3 Server 4
d1 d2 d3 d3
d4 d4 d5 d6

Server 1 Server 2 Server 3 Server 4
d1 d1 d2 d2
d3 d4 d3 d4

3-out-of-4 sharing 2-out-of-4 sharing

Figure 2: Additive sharings of a private RSA key d.

S = S1 � S2 � S3 mod N . Since d = d1 + d2 + d3 we
have that S = Md mod N as required. Note that
the private key d was never reconstructed in order
to be used. In addition, there is no communication
between the share servers. The only interaction is
between the client and each of the servers.

Clearly this approach generalizes to distributing a
private RSA key among k servers. Even if k � 1 of
the shares are exposed, an attacker learns nothing
about the private key d. Since all k share servers
must be involved in applying to key we call this
sharing a k-out-of-k sharing.

3.1.1 t-out-of-k sharing

There are a number of problems with the approach
described above. Most importantly, it is not fault-
tolerant. If one of the share servers crashes the en-
tire system goes o�ine. If one of the share servers
loses its share, the private key is lost forever. For
this reason, we use a t-out-of-k sharing of the secret
key; any t of the share servers can be used to apply
the key. For instance, if we use a 3-out-of-4 sharing
no harm is done if one of the share servers is taken
o�ine. In addition, a break-in into any two servers
reveals no information about the private key.

Typically a t-out-of-k sharing is achieved using
Shamir's classic secret sharing [14]. Unfortunately,
when using Shamir's secret sharing the keys must be
reconstructed before they can be used. This is inap-
propriate for our purposes. Instead, we use a combi-
natorial construction to obtain a t-out-of-k sharing
of d from several t-out-of-t sharings of d. We give
two examples in Figure 2. In both examples all the
di's are random integers in the range [�N;N ] satis-
fying the stated equalities. Each server stores multi-
ple di's as indicated by the column corresponding to
that server. Observe that in the example on the left,
any three servers can apply the key while any two

servers learn nothing about d. The example on the
right is more fault tolerant, but compromising two
servers reveals the key. A compromise of a single
server reveals nothing about the key. More gener-
ally, we implemented an algorithm that constructs
tables as above for a t-out-of-k sharing for any t and
k. The algorithm is based on ideas from [1, 4].

When a client requests that the servers apply a pri-
vate key, it speci�es which coalition of t servers is
used. Based on the coalition, each server locally
decides which of its di's it will use and sends the
resulting Si back to the client. The client multiplies
the t responses and obtains the signature S. The
client then uses the public key to check the validity
of S as a signature. This is done to ensure that all
share servers responded properly. In Section 4 we
explain how we deal with corrupt share servers that
apply their private shares incorrectly.

3.2 Key structures and key storage

Our system manages three types of keys: (1) a stan-
dard RSA public key, (2) a private share stored on
each share server, and (3) a public shared key stored
on each client. The public key stored on the clients
contains the public RSA key plus some additional
public information. We describe each of these keys
below.

The SSLeay package [16] supports reading and
writing both public and private keys in PEM
format. Our private shares and public shared
keys are represented internally as extensions of the
standard RSA key data structure. On disk, we
support a PEM-encoded ASN.1 format similar to
that used for RSA keys.

Public key This is a standard RSA public key
made up of an RSA modulus N and a pub-
lic exponent e. It is managed by the standard
RSA functions provided in SSLeay. Note that



Figure 3: Shared key �le formats.

type: INT INT INT INT INT INT INT INT � � � INT
data: version N e k t w d1 d2 � � � dw

(a) Private key �le format.

type: INT INT INT INT INT INT INT INT INT � � � INT

data: version N e k t g u gd1 gd2 � � � gdu

(b) Public shared key �le format.

an outsider communicating with the clients is
unaware that the corresponding private key is
stored in shared form.

Private share The private share stored on each
share server contains the modulus N and a
number of private di's. For a t-out-of-k shared
key the private share �le format (as ASN.1)
is shows in Figure 3a. Each share server is
given w shares d1; : : : ; dw. Note that the pri-
vate share �le does not contain the optional
values d mod p� 1; d mod q� 1, or q�1 mod p,
normally used to optimize RSA computations,
where N = pq. After all, none of the parties
can construct these values.

Public shared key The format of the public key
�le stored on each client is shown in Figure 3b
(all arithmetic is done modulo N). Here u is
the total number of gdi 's stored on the client.
The values g and gdi mod N are used to de-
tect incorrect (or possibly compromised) pri-
vate share operations by the share servers, as
discussed in the next section. For each share
di on each share server, there is a gdi in the
public shared key. For example, in the 3-out-
of-4 sharing of the previous section the public
shared key contains six entries, so u = 6.

4 Using a shared key

We are now ready to describe the interaction that
takes place when a client requests the share servers
to apply a private key to a message M . Through-
out the interaction the client keeps two bit-vectors
offline and corrupt, indicating which of the share
servers are currently o�ine and which have been
found to be corrupt. We assume the client wishes
to use a t-out-of-k shared key.

Init The client sets offline and corrupt to zero.

Step 1: The client picks a random coalition of t
servers (out of k) that are neither o�ine nor
corrupt.

Step 2: The client sends the following message to
each of the servers in the coalition:

command sign or decrypt M

coalition key-ID corrupt o�ine

where key-ID is the ID of the key the servers
should apply. The key-ID is simply a 32 bit
hash of N and e.

Step 3: Based on the coalition being used, each
of the servers extract the appropriate di from
its private key share of key-ID. It then locally
computes Si = Mdi mod N and send Si back
to the client. Note that if a signature is being
requested, the client �rst veri�es that the mes-
sage M is in PKCS1 format, and rejects the
request if not.

Step 4: The client collects all the Si's and com-
putes S =

Qt
i=1 Si mod N . If some of the

servers were found to be o�ine, the offline bit
vector is updated and the process is restarted
at Step 1.

Step 5: If Se = �M mod N the key was applied
correctly and the process terminates.

Step 6: Otherwise, for each server in the coalition
the client performs a zero-knowledge test to
validate the server's response. The test is de-
scribed in the next section. All servers that sent
incorrect values are marked as corrupt and the
process is restarted at Step 1.

If at Step 1 there are less than t servers that are
neither corrupt nor o�ine the process fails. Note
that the identity of corrupt share servers is sent to
all share servers. This enables the servers to notify



the administrator, who can take appropriate action
to refresh the shares stored on the corrupt servers.

Load balancing When many di�erent clients use
the same share servers, the load on the servers may
hurt overall system performance. Fortunately, our
choice of a random coalition in Step 1 provides for
automatic load balancing among the servers. When
a 3-out-of-5 key is used each application of the key is
likely to make use of a di�erent set of three servers.
Furthermore, by using a suÆciently low timeout pe-
riod clients can avoid waiting for busy servers by
switching to a di�erent coalition. Due to the load
balancing e�ect, a 3-out-of-5 sharing will result in a
higher throughput than a 3-out-of-4 sharing.

4.1 Identi�cation of corrupt servers

It remains to show how we identify corrupt servers
in Step 6. This protocol is only used in the un-
likely event one of the servers returns an incor-
rect response in Step 3. Recall that server i sent
Si = Mdi mod N back to the client where di is its
share of the private key. By examining its own pub-
lic shared key �le the client obtains Vi = gdi mod N .
To validate sever i's response the client does the fol-
lowing:

Step 6.1: The client picks random a and b in the
range [1; N ] and computes Z =Magb mod N .

Step 6.2: It sends the following to server i:

command hash-sign Z

coalition key-ID corrupt o�ine

Step 6.3: A legitimate server will respond with
Ai = H(Zdi mod N) where H is a crypto-
graphic hash function. We use SHA-1.

Step 6.4: The client checks that Ai =
H [Sa

i V
b
i mod N ]. If not, the server is de-

clared to be corrupt.

The above protocol is a simpli�cation of a protocol
from [7]. The following lemma shows that a share
server who sends an invalid Si will be caught with
overwhelming probability. Furthermore, the proto-
col reveals no information about the server's secret
shares. The lemma relies on the Small Order As-
sumption (SOA): there is no eÆcient algorithm that,

given an RSA modulus N = pq, outputs an element
x in ZN, where x 6= �1, so that the order of x in
ZN is less than N1=2.

Lemma 4.1 Assuming SOA, a server who in step 2
sends any value other than �Mdi mod N will fool
the above protocol with probability at most 1=N1=2.
Furthermore, assuming the hash function used is
a random function, the protocol is zero-knowledge
(i.e. the client can simulate its interaction with the
server).

For a 1024 bit key, the probability that a server fools
the client is less than 1=2512 |negligibly small. The
hash function is used to prevent a malicious client
from obtaining signatures on improperly formatted
messages (i.e. not in PKCS1 format). For example,
in a CA environment the decrypt command is dis-
abled. Consequently, the servers can only be used to
generate signatures and they only sign properly for-
matted PKCS1 messages. In this environment, the
hash function prevents the client from using the val-
idation test to obtain signatures on arbitrary mes-
sages.

We note that when gcd(p � 1; q � 1) = 2 the SOA
assumption is equivalent to assuming the hardness
of factoring. However, since our servers cannot test
this condition (no single server knows p and q) we
use the SOA as the intractability assumption in
Lemma 4.1.

5 Implementation details

5.1 Certi�cate formats

The ITTC system uses the Secure Socket Layer
(SSL) to authenticate and encrypt all communica-
tion. The administrator issues a certi�cate to each
entity (client, share server, and administrative util-
ity) in the system, which must be in a recognized
format. The CN (Common Name) �eld in each cer-
ti�cate contains a string that allows other parties to
identify it as described in the following table:

Entity ID String
Client [CLIENT n]

Share Server [SERVER n]
Administrator [ADMIN n]



When establishing an SSL-secured connection, both
peers must send their certi�cates to establish mutual
authentication. Each peer veri�es the certi�cate it
receives and then parses it to extract the identifying
string to ensure that the peer is authentic. If a
certi�cate is not sent, if veri�cation fails, or if the
identity string does not match what was sent in the
protocol, the connection fails.

5.2 Sequence numbers

Although client and server certi�cates thwart di-
rect network snooping and impersonation attacks
against the servers, the ITTC threat model requires
the system to tolerate and resist successful attacks
against individual clients and servers as well. If an
attacker, for example, obtains the private key and
certi�cate of a legitimate client, he could use it to
obtain access to any shared keys that the client had
access to. To limit the amount of damage under
these circumstances, ITTC uses sequence numbers
in the connection protocols to detect such compro-
mises after the fact. Each client and server keeps
a count of how many times it has been accessed by
each other entity in the system, and all connections
involve an exchange of sequence numbers to verify
synchronization. An attacker who uses a stolen key
and certi�cate will cause the sequence number at
each server to be incremented without a correspond-
ing change in the sequence number at the \victim"
client's system. The next time that client attempts
to access a server, the mismatch will be detected.

The actual multi-step sequence number exchange
proceeds as follows. Assume that both client and
server are currently synchronized at sequence num-
ber n initially:

1. The server sends n to the client and sets its own
sequence number to n+ 1.

2. The client expects n. It sends n+1 back to the
server. It sets its own sequence number to n+1.
(In this step, the client also accepts n+1 from
the server. If this happens, it sends n+2 back
to the server and sets its own sequence number
to n + 2. The rest of the protocol proceeds
with the client adding one to all its sequence
numbers.)

3. The server expects n + 1. It sends n + 2 back
to the client. It sets its own sequence number
to n+ 2.

4. The client expects n + 2. It sets its own se-
quence number to n+ 2.

When the protocol completes successfully, both
client and server hold sequence number n+ 2. The
advantage this protocol has over a simpler single-
increment protocol is that it distinguishes between
ordinary network failure and a genuine security
breach. In a single-increment protocol, it is possible
for a network failure to cause one party to incre-
ment its sequence number while the other does not.
The o�-by-one discrepancy in the sequence numbers
would be interpreted as a security breach during
subsequent interactions between these two parties.
This double-increment protocol, on the other hand,
increments sequence numbers by two for each suc-
cessful interaction, while ensuring that the server's
sequence number never drifts by more than one rela-
tive to the client's number. A network failure would
result in at most an o�-by-one discrepancy, which
would then be resolved in step two of the protocol.
A real security breach would cause the numbers to
di�er by two or more, presumably triggering a legit-
imate alarm.

5.3 Interface to TLB

To access the underlying ITTC functionality, client
programs link against the TLB code and call func-
tions in its external interface. Since it is possible to
perform all the standard RSA cryptographic opera-
tions (encrypt, decrypt, sign, verify) with an ITTC-
style RSA key, existing applications can be rewrit-
ten to use these keys by replacing conventional RSA
calls with calls to TLB functions.

This approach has some drawbacks, most notably
that it requires e�ort to go through each applica-
tion to �nd RSA cryptographic calls and replace
them with their ITTC counterparts. Fortunately,
the design of SSLeay allows us to implement the
TLB interface more elegantly. In SSLeay, RSA keys
(type RSA *) contain not only the data correspond-
ing to the keys (N , e, d, etc.) but also pointers
to functions that perform the four basic RSA op-
erations. This form of polymorphism allows us to
reduce the entire TLB interface to a single function
call:

RSA *ITTC_load_RSA_key(char *ittckeyfile);



This function returns an RSA object whose \func-
tion table" points to functions that perform ITTC-
style decryption and signing (encryption and sig-
nature veri�cation are handled just like an ordi-
nary RSA key). Modifying an application to handle
ITTC-style keys is now a matter of changing only
one piece of code, namely the code that loads RSA
keys. Once the key is loaded in this manner, appli-
cation code cannot distinguish an RSA object ob-
tained through ITTC from a conventional RSA key,
and no other code needs to be modi�ed.

Section 6 contains some examples of applications
that used this technique to support ITTC-style
shared keys. This object-oriented method of encap-
sulating functionality with data can be carried over
to other cryptographic architectures (e.g. Java's
JCA or Microsoft CAPI) that support provider in-
terfaces.

6 Example applications

6.1 Intrusion tolerant certi�cation au-
thority

The ITTC-based certi�cate authority application
signs incoming certi�cate requests with the appro-
priate shared private key. The application itself is
based on Eric Young's ca certi�cate authority pro-
gram, which is included with SSLeay. As described
in Section 5.3, adapting the existing code to handle
ITTC keys involved only a minimal change to the
code, as seen in Table 1.

#ifndef ITTC

BIO_read_filename(in,keyfile);

pkey=PEM_read_bio_PrivateKey(in,NULL,NULL);

#else

pkey=EVP_PKEY_new();

rsa=ITTC_load_RSA_key(keyfile);

EVP_PKEY_assign_RSA(pkey,rsa);

#endif

Table 1: ITTC Certi�cate Authority Code Patch

The modi�ed certi�cate authority (ittc ca), ac-
cepts the same inputs and command line arguments
as the original program. For example, the command

ittc_ca -config ca.cnf -in request.req

-out newcert.pem -keyfile sharedkey.rsk

veri�es the self-signed standard-form certi�cate re-
quest in request.req, signs it with the shared RSA
key sharedkey.rsk, and writes the PEM-encoded
X509 result in newcert.pem. The �le ca.cnf is an
internal SSLeay con�g �le.

In most applications where an ITTC private key is
used, it is necessary to obtain a signed certi�cate for
the corresponding public key from a well-known is-
suer (e.g. when using ITTC to secure a Web server's
private key, see Section 6.2). The ittc req program
generates correctly-formatted, self-signed certi�cate
requests from ITTC-style shared keys. The com-
mand

ittc_req -config ca.cnf -new

-key sharedkey.rsk -out request.req

compiles a standard-form certi�cate request for the
shared key sharedkey.rsk and applies the shared
key once to sign it. The output (request.req) is
indistinguishable from a certi�cate request gener-
ated from a conventional RSA key and can be sent
o� to any certi�cate authority (e.g. Verisign) to be
signed.

6.2 Distributed web server

In addition to securing the private key for a certi�-
cate authority, ITTC can protect private keys for a
Web server. The technique of Section 5.3 was ap-
plied to the source code for ApacheSSL 1.2.6 to pro-
duce an ITTC-enabled secure server. Since Apache
already used SSLeay to handle its public-key cryp-
tography, the entire extent of our modi�cations to
Apache consisted of the three lines of C code shown
in Table 2.

#ifdef ITTC

pConfig->prsaKey =

ITTC_load_RSA_key(szPath);

#else

pConfig->prsaKey=RSA_new();

PEM_read_RSAPrivateKey(f,

&pConfig->prsaKey, NULL);

#endif

Table 2: ApacheSSL Code Modi�cation for ITTC

With this change in place, Apache accepts ITTC-
style private keys and treats them as if they were



conventional RSA keys. An administrator simply
generates an ITTC shared key, generates a self-
signed certi�cate request with the ittc req appli-
cation (see Section 6.1), and sends this request to
a recognized certi�cate authority. Once the signed
certi�cate is received, Apache is con�gured to use
the certi�cate and corresponding key with the fol-
lowing entries in its con�guration �le, httpd.conf:

SSLCertificateFile

/usr/local/httpd/SSLconf/cert.pem

SSLCertificateKeyFile

/usr/local/httpd/SSLconf/privatekey.rsk

Once the Web server is started up, it will present
the certi�cate cert.pem to Web browsers and use
the ITTC shared key privatekey.rsk to decrypt
and/or sign responses.

7 Performance

The following timing measurements were taken on
six Intel-based PC's. Two were running Solaris 2.6
at 333Mhz and four were running Windows NT
at 450Mhz. The machines were connected via a
10base-T Ethernet. Clearly, a faster local network
would improve our performance numbers.

Table 3 shows the latency and throughput for sev-
eral key-sizes and sharings. Latency is the time that
a client has to wait for a request to be serviced.
Throughput is the number of requests that can be
serviced per second. The table also lists the num-
ber of concurrent threads running on the client. The
more threads run on the client the higher the load
on the servers. Load balancing causes each share
server to see some fraction of the requests. For ex-
ample, when 10 threads are used the client makes
10 concurrent requests. If a 3-out-of-5 sharing is in
use, each share server will service an average of 3

5

of the total requests, or an average of 6 concurrent
requests.

If the requests are processed serially, throughput de-
pends only on latency, but when multiple clients
connect to the servers at once load-balancing in-
creases throughput. Increasing the number of si-
multaneous connections slows down each individual
request but increases the throughput. Unless stated
otherwise, the number of simultaneous connections
was set to two.

A larger key corresponds to more communication
and longer computations, so as the number of bits
in the key increases, the latency increases and the
throughput decreases. In every con�guration, the
1024-bit key was signi�cantly faster than the 2048-
bit key.

Latency is a�ected by both the number of servers
involved in a request and the total number of
servers. For a �xed threshold, a larger total number
of servers makes load-balancing more e�ective by
distributing concurrent requests over more servers.
This keeps the servers from being inundated by re-
quests. When the total number of server is �xed,
a higher threshold is likely to increase latency. To
see this recall that a request completes only once all
the servers in the coalition respond. With a larger
coalition it is more likely that a busy server is in-
cluded in the coalition. Hence, the time until the
request completes is likely to increase.

The ratio of servers used to the total number of
servers is the dominating factor in throughput. For
example, with the 3-out-of-5 sharing, this ratio
would be 0.6. As this ratio shrinks, a smaller portion
of the servers is required per request, and more si-
multaneous requests can be processed with the same
performance.

Table 3 also compares shared keys versus standard
non-shared RSA keys. As expected, latency is larger
when using a shared key than when using a non-
shared key. The use of the shared key requires com-
munication with share servers which is not required
when using a non-shared key. Likewise, throughput
is lower when using a shared key, but throughput
doesn't degrade as much as latency because of load-
balancing and multi-threading of the share servers.

As the number of simultaneous requests (threads)
grows, latency also grows, because of the higher load
on the servers. However, throughput improves be-
cause of load balancing and because the servers can
service some threads while other threads are idle.

Table 4 shows what happens when some servers are
taken o�ine. This is implemented by putting the
share-servers in \suspended" mode. In this mode,
a server can accept connections, but immediately
closes them. Performance is identical when a server
is simply shut down.

The TLB detects all o�ine servers in the coalition in
one pass. When too many servers are o�ine, TLB



thr. no sharing 2-out-of-3 2-out-of-4 3-out-of-4 3-out-of-5
1024 2 0.067s 29.2/s 0.411s 4.86/s 0.403s 4.95/s 0.639s 3.08/s 0.638s 3.13/s
1024 10 0.070s 28.9/s 1.343s 7.14/s 1.180s 7.90/s 1.790s 4.83/s 1.755s 4.90/s
2048 2 0.370s 5.38/s 1.434s 1.38/s 1.268s 1.55/s 1.978s 1.01/s 1.975s 1.00/s

Table 3: Latency and throughput as a function of key size

2-out-of-3 2-out-of-4 3-out-of-4 3-out-of-5
0{o�ine 0.411s 4.86/s 0.403s 4.95/s 0.639s 3.08/s 0.638s 3.13/s
1{o�ine 0.604s 3.26/s 0.532s 3.72/s 0.979s 2.01/s 0.887s 2.19/s
2{o�ine 0.763s 2.60/s 0.967s 2.03/s

Table 4: The e�ect of o�ine servers (1024-bit key)

returns an error code. For example, the 2-out-of-3
sharing will return an error code if two servers are
o�ine, since the remaining server cannot service a
request by itself.

Taking servers o�ine increases latency because
some requests have to be issued multiple times, with
di�erent coalitions. Also, as servers are taken of-
ine, load-balancing forces the remaining servers
to service more requests, further increasing latency.
Throughput also su�ers when servers are taken of-
ine, for the same reasons as latency.

Performance drops more when going from 0{o�ine
to 1{o�ine than it does when going from 1{o�ine
to 2{o�ine. 2{o�ine is worse than 1{o�ine since in
the worst case requests may need to be issued three
times until a valid coalition is found. As servers are
taken o�ine, the sharings that use a larger fraction
of the total servers degrade the most. For example,
taking one server o�ine a�ects the 2-out-of-3 and
3-out-of-4 sharings more than the 2-out-of-4 shar-
ing. This is because load balancing is more e�ec-
tive when the number of servers per request is small
compared to the total number of servers.

Table 5 shows the e�ects of corrupt servers. Corrupt
servers act just like normal servers, but they return
invalid responses. In the tests used to �nd this data,
corrupt servers compute the correct response, then
return twice that value. When an invalid response
is detected all servers in the coalition are checked
for corruption. Hence, all corrupt servers in the
coalition are detected in one pass.

Latency grows dramatically when corrupt servers
are detected. There are two causes for this growth.
First, just as with o�ine servers, requests may need
to be issued multiple times. Second, when a cor-

ruption is found, each server in the corrupt coali-
tion must be checked to see if it is corrupt (see
Section 4.1). Comparing this chart to the previ-
ous chart, it becomes apparent that a corrupt server
adds approximately 2.7 times latency penalty as an
o�ine server in the same con�guration. As with
o�ine servers, throughput su�ers as servers are cor-
rupted, for the same reasons as latency.

Table 6 shows the performance of a web-server and
certi�cation authority, both using shared and non-
shared private keys of size 1024-bits and 2048-bits.
The web-server was tested by repeatedly establish-
ing an SSL connection and issuing a HEAD request to
a URL on the web-server. The number of threads
listed in the table reects the number of concurrent
threads used by the test program when establishing
connections to the web server.

In the web-server, both latency and throughput are
worse with a shared-key than with a non-shared key,
but not by much. With 10 simultaneous connec-
tions, latency is only 24% higher for a shared key
and throughput is only 17% worse. For most appli-
cations, this slowdown is insigni�cant considering
that SSL session establishment is only a small part
of the interaction with the web server.

8 Related work

Fray, Deswarte and Powel [8] and Deswarte, Blain
and Fabre [5] describe an encrypted �le system
where �le keys are distributed using Shamir secret
sharing across several key servers. Keys are recon-
structed every time a �le is accessed. In contrast, by
using threshold RSA, the ITTC system never recon-
structs long term private keys in a single location.



2-out-of-3 2-out-of-4 3-out-of-4 3-out-of-5
0{corrupt 0.411s 4.86/s 0.403s 4.95/s 0.639s 3.08/s 0.638s 3.13/s
1{corrupt 0.955s 2.06/s 0.823s 2.40/s 1.478s 1.31/s 1.334s 1.50/s
2{corrupt 1.536s 1.28/s 2.084s 0.95/s

Table 5: The e�ect of corrupt servers (1024-bit key)

key-size thr. no sharing 2-out-of-3 2-out-of-4 2-out-of-4
1{o�ine

web-server 1024 2 0.209s 9.50/s 0.644s 3.10/s 0.515s 3.84/s 0.535s 3.73/s
web-server 1024 10 1.097s 8.25/s 1.362s 6.85/s 1.503s 6.03/s 1.543s 5.66/s
web-server 2048 2 0.389s 5.05/s 1.527s 1.31/s 1.484s 1.34/s 1.509s 1.32/s

CA 1024 2 0.067s 29.2/s 0.411s 4.86/s 0.403s 4.95/s 0.532s 3.72/s
CA 2048 2 0.370s 5.38/s 1.434s 1.38/s 1.268s 1.55/s 1.749s 1.12/s

Table 6: Usage of ITTC in a CA and web server

The 
 system [12], built at AT&T, also uses
threshold cryptography to protect private keys. 

supported a Certi�cation Authority (CA) used at
AT&T. It was the �rst system to demonstrate the
practicality of threshold cryptography. We note
that 
 does not support distributed key generation,
detection of corrupt servers or the ability to refresh
shares in case a share server is compromised.

The proactive security toolkit [2] built at IBM fo-
cuses on using proactive security applied to DSS
to protect private DSS signing keys. The system
shares a DSS key among a number of servers, and
proactively refreshes these shares once every prede-
termined time period (e.g. once a day). Interest-
ingly, DSS and RSA have di�erent sharing proper-
ties. RSA keys are easy to share (so that a signature
can be generated without reconstructing the key),
but are hard to generate distributively (so that none
of the participants know the private key). On the
other hand, DSS keys are easy to generate distribu-
tively, but are harder to use for threshold signatures.

Our particular implementation of threshold RSA is
based on one of several possible algorithms. We
chose an algorithm for threshold RSA that is best
suited to handle a small number of share servers (i.e.
less than six). For a larger number of servers one
could use a recent algorithm due to Shoup [15].

9 Conclusions

The ITTC system enables applications to store their
private keys in an intrusion tolerant fashion. Pen-

etrating a few share servers reveals no information
about the private key. Penetrating a client is de-
tected through our use of sequence numbers and
does not expose any shared keys. Our system elimi-
nates single points of failure by never reconstructing
a shared private key in a single location. Even key
generation is done in shared form. The system de-
tects and corrects o�ine and corrupt servers. For
instance, one of the share servers can be taken o�ine
for maintenance without a�ecting system behavior.

ITTC is easy to embed into existing applications.
We built a web server and a CA in which private
keys are managed using ITTC. Our performance �g-
ures show that the cost of using ITTC is reasonable.
This is especially true in the case of a web server
where session key exchange is only a small fraction
of the total work performed by the server. Session
key exchange is not done too frequently since both
the browser and server cache session keys.

Acknowledgments

Research supported by DARPA/ITO. We thank Bill
Aiello and Sivaramakrishnan Rajagopalan (Raj) for
their help throughout the project.

References

[1] N. Alon, Z. Galil, M. Yung, \Dynamic re-sharing
veri�able secret sharing against a mobile adver-
sary", in Proceedings of the 1995 European Sym-
posium on Algorithms (ESA), pp. 523{537.



[2] B. Barak, A. Herzberg, D. Naor, E. Shai, \The
proactive security toolkit and applications", to
appear in the 6th ACM Conference on Computer
and Communications Security, 1999.

[3] D. Boneh, M. Franklin, \EÆcient generation of
shared RSA keys", in Proceedings Crypto' 97, pp.
425{439.

[4] Y. Desmedt, G. Di Crescenzo, M. Burmester,
\Multiplicative non-abelian sharing schemes and
their application to threshold cryptography",
Proceedings ASIACRYPT '94, pp. 21{32.

[5] Y. Deswarte, L. Blain, J Fabre, \Intrusion toler-
ance in distributed computing systems", Proceed-
ings IEEE Symposium on Security and Privacy,
Oakland, 1991, pp. 110{121.

[6] Y. Frankel, \A practical protocol for large group
oriented networks", Eurocrypt 89, pp. 56{61.

[7] Y. Frankel, P. Gemmel, P. MacKenzie, M.
Yung, \Optimal-resilience proactive public-key
cryptosystems", Proceedings FOCS '97, pp. 384{
393.

[8] J. Fray, Y. Deswarte, D. Powell, \Intrusion toler-
ance using �ne-grain fragmentation-scattering",
Proceedings IEEE Symposium on Security and
Privacy, Oakland, 1986, pp. 194{201.

[9] P. Gemmel, \An introduction to threshold cryp-
tography", in CryptoBytes, a technical newsletter
of RSA Laboratories, Vol. 2, No. 7, 1997.

[10] M. Malkin, T. Wu, D. Boneh, \Experimenting
with shared RSA key generation", Proceedings of
the Internet Society's 1999 Symposium on Net-
work and Distributed System Security (SNDSS),
pp. 43{56

[11] Public Key Cryptography Stan-
dards (PKCS), RSA Labs, available at
http://www.rsa.com/rsalabs/pubs/PKCS/

[12] M. Reiter, M. Franklin, J. Lacy, R. Wright,
\The 
 key management service", Proceedings of
the 3rd ACM conference on Computer and Com-
munication Security, 1996.

[13] T. Rabin, \A simpli�ed approach to threshold
and proactive RSA", Proceedings of Crypto' 98.

[14] A. Shamir, \How to share a secret", Comm. of
the ACM, Vol. 22, 1979, pp. 612{613.

[15] V. Shoup, \Practical threshold signatures", to
appear.

[16] E. Young, SSLeay, http://www.ssleay.org/


