
Chosen Ciphertext Secure Public Key
Threshold Encryption Without Random Oracles

Dan Boneh1?, Xavier Boyen2, and Shai Halevi3

1 Stanford University, Stanford, CA, dabo@cs.stanford.edu
2 Voltage Security, Palo Alto, CA, xb@boyen.org
3 IBM, T.J. Watson, NY, shaih@alum.mit.edu

Abstract. We present a non-interactive chosen ciphertext secure thresh-
old encryption system. The proof of security is set in the standard model
and does not use random oracles. Our construction uses the recent iden-
tity based encryption system of Boneh and Boyen and the chosen cipher-
text secure construction of Canetti, Halevi, and Katz.

1 Introduction

A threshold public key encryption system [14, 16, 13, 19] is a public key system
where the private key is distributed among n decryption servers so that at least
k servers are needed for decryption. In a threshold encryption system an entity,
called the combiner, has a ciphertext C that it wishes to decrypt. The combiner
sends C to the decryption servers, and receives partial decryption shares from
at least k out of the n decryption servers. It then combines these k partial de-
cryptions into a complete decryption of C. Ideally, there is no other interaction
in the system, namely the servers need not talk to each other during decryp-
tion. Such threshold systems are called non-interactive. Often one requires that
threshold decryption be robust [22, 18], namely if threshold decryption of a valid
ciphertext fails, the combiner can identify the decryption servers that supplied
invalid partial decryptions.

In this paper we study threshold encryption systems secure against chosen
ciphertext attacks (CCA). The first such system, using random oracles, was given
by Shoup and Gennaro [34]. Without random random oracles, this problem is
much harder and was left as an open problem in [34]. Further work on this
problem is discussed later in the introduction.

We present a very efficient non-interactive CCA threshold encryption system
without random oracles. Our construction proceeds in two steps. First, we extend
the CCA construction of Canetti et al. [10] to threshold systems. Second, we give
a robust threshold version of a recent Identity Based Encryption (IBE) due to
Boneh and Boyen [3]. We achieve robustness by adding a number of internal
checks to the system. Our main construction is obtained by composing these
two results. This approach was outlined in the full versions of [3] and [10] and
here we flesh out the full details. In Section 6 we briefly discuss several extensions
such as proactive refresh [30, 24, 17] and distributed key generation [31, 21].
? Supported by NSF and the Packard Foundation.



Related work. Recall that the Cramer-Shoup system [11] and its variants [33,
28] provide efficient chosen ciphertext secure encryption without random oracles.
All these systems require that the private key be used to test ciphertext validity
during decryption. In a threshold environment none of the decryption servers
possess the private key needed to perform this validity test. Consequently, con-
structing a threshold version of the Cramer-Shoup system is non-trivial. The first
such construction is due to Canetti and Goldwasser [8]; other threshold versions
of Cramer-Shoup are given in [1, 25].

These systems, however, are more complicated than the system in this paper:
they require either a large degree of interaction between the decryption servers,
or storage of a large number of pre-shared secrets. More recent constructions [29,
15, 12] are non-interactive, but are far less efficient than the construction in this
paper. We refer to [34] for a comprehensive survey of the related work as well as
the many applications of threshold encryption.

Our Contribution. This paper shows that CCA-secure threshold public key
systems (in the standard model) are easier to derive from semantically secure
Identity Based Encryption than from the Cramer-Shoup paradigm. In the non-
threshold setting, the latest variant of either approach give public key sys-
tems that have similar encryption performance, whether IBE-based [6] or CS-
based [28]. On the the other hand, in the threshold setting, the IBE approach
appears to offer substantial benefits in terms of efficiency. The main reason is
that in the IBE-to-CCA transformation from [10], the validity test performed
during decryption requires only the public key. Consequently, each decryption
server can test ciphertext validity on its own and only release a partial decryption
of valid ciphertexts. (The more efficient transformation of Boneh and Katz [6]
does not have this property, and is thus less suitable for threshold encryption.)

We extend [10] to give a generic transformation from threshold IBE to thresh-
old public key encryption, and present a concrete construction based on a thresh-
old version of the Boneh-Boyen IBE [3]. We add a number of internal checks to
provide robustness against misbehaving decryption servers. The basic idea of
this paper was originally suggested in the expanded versions of [3] and [10],
but without any detail. This work gives an explicit account of the construction
including all the additional checks that one has to perform.

We note that Boyen, Mei, and Waters [7] very recently gave a particularly
simple and efficient CCA2-secure key encapsulation mechanism based on the
Boneh-Boyen IBE framework. It is self-contained, by contrast to the generic
CHK and BK transformations, which require additional ingredients. As with
CHK, the BMW method supports public ciphertext verification, and is thus suit-
able for non-interactive threshold decryption. Likewise, they adapt our present
construction to realize an efficient CCA2-secure non-interactive threshold KEM
that eschews the need for signatures.



2 Definitions

As a preamble to our results, we recall the definitions of threshold PKE and
IBE, and secure signatures.

As usual, we say that a function f : Z→ R is negligible if for all c > 0 there
exists N ∈ Z such that |f(x)| < 1/xc for all x > N .

2.1 Threshold Public Key Encryption

We define chosen ciphertext secure (CCA2) threshold public key encryption for
a static adversary. We mostly follow the notation from Shoup and Genarro [34].
A Threshold Public Key Encryption (TPKE) system consists of five algorithms.

Setup(n, k, Λ): Takes as input the number of decryption servers n, a threshold
k where 1 ≤ k ≤ n, and a security parameter Λ ∈ Z. It outputs a triple
(PK,VK,SK) where PK is called the public key, VK is called the verification
key, and SK = (SK1, . . . ,SKn) is a vector of n private key shares. Decryp-
tion server i is given the private key share (i,SKi) and uses it to derive a
decryption share for a given ciphertext. The verification key VK is used to
check validity of responses from decryption servers.

Encrypt(PK,M): Takes as input a public key PK and a message M . It outputs
a ciphertext.

ShareDecrypt(PK, i,SKi, C): Takes as input the public key PK, a ciphertext
C, and one of the n private key shares in SK. It outputs a decryption share
µ = (i, µ̂) of the enciphered message, or a special symbol (i,⊥).

ShareVerify(PK,VK, C, µ): Takes as input PK, the verification key VK, a ci-
phertext C, and a decryption share µ. It outputs valid or invalid. When
the output is valid we say that µ is a valid decryption share of C.

Combine
(
PK,VK, C, {µ1, . . . , µk}

)
: Takes as input PK,VK, a ciphertext C, and

k decryption shares {µ1, . . . , µk}. It outputs a cleartext M or ⊥.

Consistency Requirements. Let (PK,VK,SK) be the output of Setup(n, k, Λ).
We require the following two consistency properties:

1. For any ciphertext C, if µ = ShareDecrypt(PK, i,SKi, C) where SKi is the
i-th private key share in SK, then ShareVerify(PK,VK, C, µ) = valid.

2. If C is the output of Encrypt(PK,M) and S = {µ1, . . . , µk} is a set of
decryption shares µi = ShareDecrypt(PK, i,SKi, C) for k distinct private
keys in SK, then we require that Combine(PK,VK, C, S) = M .

Security. Security of TPKE is defined using two properties: security against
chosen ciphertext attacks, and consistency of decryptions.



Chosen Ciphertext Security. Security against chosen ciphertext attacks is defined
using the following game between a challenger and a static adversary A. Both
are given n, k, and a security parameter Λ ∈ Z+ as input.

Init. The adversary outputs a set S ⊂ {1, . . . , n} of k−1 decryption servers
to corrupt.

Setup. The challenger runs Setup(n, k, Λ) to obtain a random instance
(PK,VK,SK) where SK = (SK1, . . . ,SKn). It gives the adversary PK,
VK, and all (j, SKj) for j ∈ S.

Query phase 1. The adversary adaptively issues decryption queries (C, i)
where C ∈ {0, 1}∗ and i ∈ {1, . . . , n}. The challenger responds with
ShareDecrypt(PK, i,SKi, C).

Challenge. The adversary outputs two messages M0,M1 of equal length.
The challenger picks a random b ∈ {0, 1} and lets C∗ = Encrypt(PK,Mb).
It gives C∗ to the adversary.

Query phase 2. The adversary issues further decryption queries (C, i), un-
der the constraint that C 6= C∗. The challenger responds as in phase 1.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

We define the advantage of A as AdvCCAA,n,k(Λ) = |Pr[b = b′]− 1
2 |.

Decryption Consistency. Consistency of decryption is defined using the following
game. The game starts with the Init, Setup, and Query phase 1 steps as in
the game above. The adversary then outputs a ciphertext C and two sets of
decryption shares S = {µ1, . . . , µk} and S′ = {µ′1, . . . , µ′k} each of size k. Let
VK be the verification key generated in the Setup step. The adversary wins if:

1. The shares in S and S′ are valid decryption shares for C under VK;
2. S and S′ each contain decryption shares from k distinct servers; and
3. Combine

(
PK,VK, C, S) 6= Combine

(
PK,VK, C, S′).

We let AdvCDA,n,k(Λ) denote the adversary’s advantage in winning this game.

Definition 1. We say that a TPKE system is secure if for any n and k where
0 < k ≤ n, and any polynomial time algorithm A, the functions AdvCCAA,n,k(Λ)
and AdvCDA,n,k(Λ) are negligible.

2.2 IBE with Threshold Key Generation

Next, we define IBE with threshold key generation. Here we are only concerned
with semantic security and ignore chosen ciphertext attacks. A Threshold Iden-
tity Based Encryption (TIBE) system consists of seven algorithms.

Setup(n, k, Λ): Takes as input the number of decryption servers n, a thresh-
old k where 1 ≤ k ≤ n, and a security parameter Λ ∈ Z. It outputs a
triple (PK,VK,SK) where PK is called the system parameters, VK is called
a verification key, and SK = (SK1, . . . ,SKn) is a vector of master key shares
analogous to the private key shares in the definition of TPKE. Decryption
server i is given the master key share (i,SKi).



ShareKeyGen(PK, i,SKi, ID): Takes as input the system parameters PK, an
identity ID, and a master key share (i,SKi). It outputs a private key share
θ = (i, θ̂) for ID.

ShareVerify(PK,VK, ID, θ): Takes as input the system parameters PK, the ver-
ification key VK, an identity ID, and a private key share θ. It outputs valid
or invalid.

Combine
(
PK,VK, ID, {θ1, . . . , θk}

)
: Takes as input PK, VK, an identity ID, and

k private key shares {θ1, . . . , θk}. It outputs a private key dID or ⊥.
Encrypt(PK, ID,M): Takes PK, an identity ID, and a message M , and outputs

a ciphertext C.
ValidateCT(PK, ID, C): Takes as input PK, an identity ID, and a ciphertext C.

It outputs valid or invalid. If valid we say that C is a valid encryption
under ID.

Decrypt(PK, ID, dID, C): Takes as input PK, ID, a private key dID, and a cipher-
text C. It outputs a message M or ⊥.

Note that, unlike the previous section, decryption is not distributed. Only key
generation is distributed.

Consistency Requirements. Let (PK,VK,SK) be the output of Setup(n, k, Λ).
We require consistency properties as for TPKE systems:

1. For any identity ID, if θ = ShareKeyGen(PK, i,SKi, C) where SKi is one of
the private key shares in SK, then ShareVerify(PK,VK, ID, θ) = valid.

2. For any ID, if S = {θ1, . . . , θk} where θi = ShareKeyGen(PK, i,SKi, ID) for k
distinct private keys in SK, and dID is the output of Combine(PK,VK, ID, S),
then we require that for any M and C = Encrypt(PK, ID,M) we have
ValidateCT(PK, ID, C) = valid and Decrypt(PK, dID, C) = M .

Security. Security of a TIBE is defined using two properties: security against
chosen identity attacks and consistency of key generation. There are two ways to
define chosen identity attacks against IBE schemes, depending on whether the
adversary chooses the target identity adaptively (an adaptive-ID attack [5]) or
selects it in advance (a selective-ID attack [9]); we only need the latter for our
purposes.

Selective-ID Security. Semantic security against a selective identity attack is
defined using the following game:

Init. The adversary outputs an identity ID∗ that it wishes to attack and a
set of k − 1 decryption servers S ⊂ {1, . . . , n} that it wishes to corrupt.

Setup. The challenger runs Setup(n, k, Λ) to obtain a random instance
(PK,VK,SK) where SK = (SK1, . . . ,SKn). It gives the adversary PK,
VK, and all (j, SKj) for j ∈ S.

Query phase 1. The adversary adaptively issues chosen identity queries
(ID, i) where ID ∈ {0, 1}∗ and i ∈ {1, . . . , n}. The only constraint is that
ID 6= ID∗. The challenger responds with ShareKeyGen(PK, i,SKi, ID).



Challenge. The adversary outputs two messages M0,M1 of equal length.
The challenger picks a random b ∈ {0, 1} and sets the challenge cipher-
text to C∗ = Encrypt(PK, ID∗,M). It gives C∗ to the adversary.

Query phase 2. The adversary and the challenger interact as in phase 1.
Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game

if b = b′.

We define the advantage of A as AdvIND-IDA,n,k(Λ) = |Pr[b = b′]− 1
2 |.

Key Generation Consistency. Consistency of key generation (and decryption)
is defined using the following game. The game starts with the Init, Setup, and
Query phase 1 steps as in the game above. The adversary then outputs an
identity ID, a ciphertext C, and two sets of private key shares S = {θ1, . . . , θk}
and S′ = {θ′1, . . . , θ′k} each of size k. Let PK and VK be the system parameters
and the verification key generated in the Setup step. The adversary wins if:

1. the shares in S and S′ are valid private key shares for ID under VK;
2. S and S′ each contain private key shares from k distinct servers;
3. C is valid for the given ID, i.e., ValidateCT(PK, ID, C) = valid;
4. the keys dID = Combine

(
PK,VK, ID, S) and d′ID = Combine

(
PK,VK, ID, S′)

are such that ⊥ 6= dID 6= d′ID 6= ⊥;
5. Decrypt(PK, ID, dID, C) 6= Decrypt(PK, ID, d′ID, C).

Let AdvCD-IDA,n,k(Λ) be the adversary’s advantage in winning the game.

Definition 2. We say that a TIBE system is selective-ID secure if for any n, k
(where 0 < k ≤ n), and any polynomial time A, the functions AdvIND-IDA,n,k(Λ)
and AdvCD-IDA,n,k(Λ) are negligible.

2.3 Strong Existentially Unforgeable Signatures

A signature scheme is made up of three algorithms, SigKeyGen, Sign, and
SigVerify, for generating a key pair, signing a message, and verifying a signature,
respectively.

The standard notion of security for a signature scheme is called existential
unforgeability under a chosen message attack [23]. We need a slightly stronger
notion of security, called strong existential unforgeability [2]. We define strong
existential unforgeability under a “one chosen message” attack using the follow-
ing game between a challenger and an adversary A:

Setup. The challenger runs algorithm SigKeyGen(Λ) to obtain a public
key VerK and a private key SigK. The adversary A is given VerK.

Query. The adversary A requests a signature on a single messages of its
choice, M ∈ {0, 1}∗, under VerK. The challenger responds with a signa-
ture σ = Sign(SigK,M).

Output. The adversary A outputs a pair (M ′, σ′) and wins the game if
(M ′, σ′) 6= (M,σ) and SigVerify(VerK,M ′, σ′) = valid.



We define AdvSigA(Λ) to be the probability that A wins in the above game.

Definition 3. A signature scheme is existentially unforgeable under a one cho-
sen message attack if for any probabilistic polynomial time algorithm A the func-
tion AdvSigA(Λ) is negligible.

Efficient constructions for such signatures schemes, without random ora-
cles, are known using the Strong-RSA assumption [20] and the 2-Strong-Diffie-
Hellman (2-SDH) assumption [4].

2.4 Bilinear Maps

We briefly review the necessary facts about bilinear groups and bilinear maps,
also called pairings, using the following notation:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G;
3. e is a bilinear map e : G×G→ G1;
4. GG(Λ) is a bilinear Group Generator as described below.

A pairing is a map e : G×G→ G1 with the following properties [26, 27, 5]:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.

Algorithm GG(Λ) is a bilinear Group Generator that takes a security parameter
Λ ∈ Z as input and outputs the description of groups G and G1 and a bilinear
map e : G × G → G1 where the group operation in G and G1 as well as the
map e can be computed in polynomial time in Λ. To simplify the notation we
use G R← GG(Λ) to denote the output of a random execution of GG on input Λ,
and posit that the output GG(Λ) contains a description of p, G, G1, and e.

2.5 Bilinear Diffie-Hellman Assumption

We say that an algorithm B that outputs b ∈ {0, 1} has advantage ε(Λ) in solving
the decision BDH problem [26, 32, 5] for the bilinear group generator GG if∣∣Pr

[
B(G, g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(G, g, ga, gb, gc, T ) = 0

]∣∣ ≥ ε(Λ)

where the probability is over the random choice of group G R← GG(Λ), the random
choice of generator g in G, the random choice of a, b, c in Zp, the random choice
of T ∈ G1, and the random bits consumed by B. We refer to the distribution on
the left as PBDH , and on the right as RBDH .

Definition 4. We say that the Decision-BDH assumption holds for GG if any
polynomial time algorithm has negligible advantage in solving the Decision BDH
problem for GG.



3 A Threshold Identity Based Encryption System

We start with a description of a concrete Threshold IBE (TIBE) system and
prove its semantic security against selective identity attacks without random or-
acles. For robustness against misbehaving servers we need to add several internal
checks to the scheme from [3]. In a later section we show how this construction
leads to a non-interactive threshold PKE with chosen ciphertext security. The
TIBE system works as follows:

Setup(n, k, Λ). Run the group generator GG(Λ) to obtain a bilinear group G of
prime order p > n. Select random generators g, g2, h1 in G, and a random
degree k − 1 polynomial f ∈ Zp[X]. Set α = f(0) ∈ Zp and g1 = gα.
The system parameters PK consist of PK = (G, g, g1, g2, h1). For i = 1, . . . , n

the master key share (i,SKi) of server i is defined as SKi = g
f(i)
2 . The public

verification key VK consists of the n-tuple (gf(1), . . . , gf(n)).
ShareKeyGen(PK, i,SKi, ID). Let PK = (G, g, g1, g2, h1) and pick a random

r ∈ Zp. Output the private key share θi = (i, (wi,0, wi,1)) calculated as

wi,0 = SKi · (gID
1 h1)r , wi,1 = gr .

ShareVerify(PK,VK, ID, θi). To verify that θi is a valid private key share for
identity ID, let VK = (u1, . . . , un) where ui = gf(i), and θi = (i, (wi,0, wi,1)).
Output valid or invalid according to the truth of the following condition:

e(ui, g2) · e(gID
1 h1, wi,1) = e(g, wi,0)

Combine(PK,VK, ID, (θ1, . . . , θk)). If one of θ1, . . . , θk is invalid, or if two shares
θi and θj bear the same server index, then output ⊥ and exit. Otherwise,
let θi = (i, (wi,0, wi,1). Without loss of generality we assume that decryption
servers i = 1, . . . , k were used to generate θ1, . . . , θk. To derive the private
key for ID let λ1, . . . , λk ∈ Zp be the Lagrange coefficients so that α = f(0) =∑k

i=1 λif(i). Output the reconstituted private key dID = (w0, w1) given by

w0 =
k∏

i=1

wλi
i,0 , w1 =

k∏
i=1

wλi
i,1

Encrypt(PK, ID,M). To encrypt M ∈ G1 for identity ID, pick a random s ∈ Zp

and output

C =
(

e(g1, g2)s ·M, gs, gs·ID
1 hs

1

)
ValidateCT(PK, ID, C). To validate a ciphertext C = (A,B, C1) with respect

to an identity ID, output valid or invalid depending on whether

e(B, gID
1 h1) = e(C1, g)



Decrypt(PK, ID, dID, C). To decrypt C = (A,B, C1) using a private key dID =
(w0, w1), first check that ValidateCT(PK, ID, C) = valid and that e(g1, g2) ·
e(gID

1 h1, w1) = e(g, w0). If either check fails, output ⊥ and exit. Otherwise,
output the plaintext

A · e(C1, w1)/e(B,w0)

The two checks during decryption ensure that C is a valid ciphertext under ID
and that dID is a valid private key for ID. These checks are needed to ensure
consistency of key generation in case some server misbehave. If these conditions
are fullfilled, then the decryption is correct, because (w0, w1) = (gα

2 (gID
1 h1)r̄, gr̄)

for some r̄ ∈ Zp, and

A · e(C1, w1)
e(B,w0)

= M · e(g1, g2)s · e(gID
1 , g)sr̄ · e(h1, g)sr̄

e(g, gα
2 )s · e(g, gID

1 )sr̄ · e(g, h1)sr̄
= M

3.1 Security

We now prove the semantic security of this threshold IBE against selective iden-
tity attacks. The proof is based on the proof in [3] and gives a tight reduction.

As in [3], the key to the simulation is the construction of a public key
(..., h1, ...) that allows the simulator to calculate private key shares for any iden-
tity except ID∗. A difference from the proof in [3] is that the simulator must be
able to extract private key shares (i.e., elements of the vector SK). In addition,
the simulator must produce a valid verification key VK, which only exists in the
threshold setting. In order to construct the components of VK that correspond
to the corrupted servers, the simulator does interpolation in the exponent. The
Lagrange interpolation coefficients are blinded and yet carry over unaffected
through the bilinear map in the verification equation. The details follow.

Theorem 1. Suppose the Decision BDH assumption holds for GG. Then the
TIBE system above is semantically secure against selective identity, chosen plain-
text attacks.

Proof. First, suppose A has advantage AdvIND-IDA,n,k > ε in attacking the
threshold IBE system for a given value of the security parameter Λ. We build
an algorithm B that solves the Decision BDH problem in a random instance
G R← GG(Λ) with advantage ε.

Let there thus be a random bilinear group G R← GG(Λ) and a random genera-
tor g ∈ G∗ of G. Algorithm B is given as input a random tuple (G, g, ga, gb, gc, T )
that is either sampled from PBDH (where T = e(g, g)abc) or from RBDH (where
T is uniform and independent in G1). Algorithm B’s goal is to output 1 (“true”)
if T = e(g, g)abc and 0 (“false”) otherwise. Set g1 = ga, g2 = gb, g3 = gc. Algo-
rithm B works by interacting with A in a threshold selective-ID game as follows:

Initialization. The adversary A chooses a set S of k−1 decryption servers that
it wants to corrupt. Let S = {s1, . . . , sk−1} ⊂ {1, . . . , n}. The adversary A
also announces the identity ID∗ it wants to attack.



Setup. B does the following:
1. First, B picks a random integer γ ∈ Zp and defines h1 = g−ID∗

1 gγ ∈ G.
Algorithm B gives A the public key PK = (G, g, g1, g2, h1). Note that the
corresponding master key, which is unknown to B, is ga

2 = gab ∈ G.
2. Next, B generates the master key shares for the k− 1 corrupt servers in

S. To do so, B first picks k − 1 random integers α1, . . . , αk−1 ∈ Zp. Let
f ∈ Zp[X] be the degree k − 1 polynomial implicitly defined to satisfy
f(0) = a and f(si) = αi for i = 1, . . . , k − 1; note that B does not
know f since it does not know a. Algorithm B gives A the k − 1 master
key shares SKsi = gαi

2 . These keys are consistent with this polynomial f

since SKsi = g
f(si)
2 for i = 1, . . . , k − 1.

3. Finally, B constructs the verification key, which is a n-vector (u1, . . . , un)
such that ui = gf(i) for the polynomial f defined above, as follows.

– For i ∈ S, computing ui is easy since f(i) is equal to one of the
α1, . . . , αk−1, which are known to B. Thus, us1 , . . . , usk

∈ G are easy
for B to compute.

– For i 6∈ S, algorithm B needs to compute the Lagrange coefficients
λ0, λ1, . . . , λk−1 ∈ Zp such that f(i) = λ0f(0)+

∑k−1
j=1 λjf(sj); these

Lagrange coefficients are easily calculated since they do not depend
on f . Algorithm B then sets ui = gλ0

1 uλ1
s1
· · ·uλk−1

sk−1 , which entails that
ui = gf(i) as required.

Once it has computed all the ui’s, B gives to A the verification key
VK = (u1, . . . , un).

Phase 1. A issues up to qS private key share generation queries to the uncorrupt
servers. Consider a key generation query to server i 6∈ S for the identity
ID 6= ID∗.
Algorithm B needs to return (i, (wi,0, wi,1)) where wi,0 = SKi(gID

1 h1)r and
wi,1 = gr for some random r ∈ Zp. To do so, B first computes the Lagrange
coefficients λ0, λ1, . . . , λk−1 ∈ Zp such that f(i) = λ0f(0) +

∑k−1
j=1 λjf(sj).

Next, B picks a random r ∈ Zp and sets

wi,0 = g
−γλ0
ID−ID∗
2 (gID

1 h1)r ·
k−1∏
j=1

g
λjαj

2 , wi,1 = g
−λ0

ID−ID∗
2 gr

We claim that (wi,0, wi,1) are a valid response to this decryption query. To
see this, let r̃ = r − bλ0

ID−ID∗ . Then we have that

g
−γλ0

(ID−ID∗)
2 (gID

1 h1)r = g
−γλ0

(ID−ID∗)
2 (gID−ID∗

1 gγ)r

= gλ0a
2 (gID−ID∗

1 gγ)r− bλ0
ID−ID∗ = gλ0a

2 (gID
1 h1)r̃

It follows that the private key share (i, (wi,0, wi,1)) defined above satisfies

wi,0 = g
f(i)
2 · (gID

1 h1)r̃ , wi,1 = gr̃

and r̃ is uniform in Zp as required. Hence, (i, (wi,0, wi,1)) is a valid response
to A.



Challenge. A outputs two same-length messages M0 and M1 on which it wishes
to be challenged. B flips a fair coin b ∈ {0, 1}, and responds with the challenge
ciphertext

C = (T ·Mb, g3, gγ
3 )

Since C = (T ·Mb, gc, gc·ID∗
1 hc

1), the challenge ciphertext is a valid encryption
of Mb with the correct distribution whenever T = e(g, g)abc = e(g1, g2)c (as is
the case when the input 5-tuple is sampled from PBDH). On the other hand,
when T is uniform and independent in G1 (which occurs when the input
5-tuple is sampled from RBDH) the challenge ciphertext C is independent
of b in the adversary’s view.

Phase 2. A issues additional queries as in Phase 1, to which algorithm B re-
sponds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows. If b = b′ then B outputs 1 meaning
T = e(g, g)abc. Otherwise, it outputs 0 meaning T 6= e(g, g)abc.

When the input 5-tuple is sampled from PBDH (where T = e(g, g)abc) then
A’s view is identical to its view in a real attack game and thereforeAmust satisfy
|Pr[b = b′] − 1/2| > ε. On the other hand, when the input 5-tuple is sampled
from RBDH (where T is uniform in G1) then Pr[b = b′] = 1/2. Therefore, with
uniformly chosen g in G∗, uniformly chosen a, b, c in Zp, and uniformly chosen
T in G1, we have, as required, that∣∣∣∣∣ Pr

[
B(G, g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(G, g, ga, gb, gc, T ) = 0

] ∣∣∣∣∣ ≥
∣∣∣∣(1

2
± ε

)
− 1

2

∣∣∣∣ = ε

To complete the proof of Theorem 1 it remains to prove consistency of key
generation. We argue that for any algorithm A we have AdvCD-IDA,n,k(Λ) = 0.
To see this, observe that the two tests performed during decryption ensure that
Decrypt(PK, ID, dID, C) outputs the same value for all reconstituted keys dID that
pass the tests. Furthermore, conditions (1)–(4) needed for the adversary to win
the consistency of key generation game ensure that both tests succeed. Hence,
Decrypt will output the same value no matter which key dID is given as input,
and thus AdvCD-IDA,n,k(Λ) = 0.

4 Threshold Public Key Encryption from Threshold IBE

In this section, we use the techniques of Canetti et al. [10] to show that any
semantically secure TIBE gives a chosen ciphertext secure TPKE. Later, we
apply this transformation on our TIBE to obtain an efficient chosen ciphertext
secure TPKE in the standard model.

Let ETIBE = (SetupTIBE, ShareKeyGenTIBE, ShareVerifyTIBE, CombineTIBE, . . .) be a
TIBE system. Let S = (SigKeyGen, Sign, SigVerify) be a signature system. We
construct a TPKE as follows:



SetupTPKE(n, k, Λ). To generate a TPKE key set, execute SetupTIBE(n, k, Λ) from
the TIBE system and output the resulting tuple (PK,VK,SK).

EncryptTPKE(PK,M). To encrypt a message M under the public key PK, first
run SigKeyGen(Λ) to obtain a signing/verification key pair (SigK,VerK).
Next, run EncryptTIBE(PK,VerK,M) to obtain a ciphertext C0, i.e., using
VerK as the identity to encrypt to. Then, run Sign(SigK, C0) to obtain a
signature σ. Output the triple C = (C0,VerK, σ) as the complete ciphertext.

ShareDecryptTPKE(PK, i,SKi, C). To obtain a partial decryption of a ciphertext
C = (C0,VerK, σ) under private key share SKi, do the following:
1. Run SigVerify(VerK, C0, σ). If the verification fails, output (i,⊥) and

exit.
2. Run ValidateCTTIBE(PK,VerK, C0). If the validation fails, output (i,⊥)

and exit.
3. Run ShareKeyGenTIBE(PK, i,SKi,VerK) to obtain a TIBE private key

share µ for the identity VerK. Output µ as the decryption share.
ShareVerifyTPKE(PK,VK, C, µ). To verify a decryption share µ with respect to

a ciphertext C = (C0,VerK, σ) under verification key VK, do the following:
1. Run SigVerify(VerK, C0, σ) and ValidateCTTIBE(PK,VerK, C0). If either

test fails do: if µ = (i,⊥) then output valid and exit and if not then
output invalid and exit.

2. Otherwise, both tests succeeded. Run ShareVerifyTIBE(PK,VK,VerK, µ)
and output the result.

CombineTPKE

(
PK,VK, C, {µ1, . . . , µk}

)
. To obtain a full decryption of a cipher-

text C = (C0,VerK, σ) given k partial decryption shares µ1, . . . , µk, first
check that all shares are valid and none are of the form (i,⊥). Output ⊥ and
exit if not. Next, run CombineTIBE(PK,VK,VerK, {µ1, . . . , µk}) to obtain a
private key d for identity VerK. If d = ⊥, output ⊥ and exit. Otherwise, run
DecryptTIBE(PK,VerK, d, C0) and output the result.

4.1 Security

The following theorem proves security of this system. The proof is based on the
proof in [10].

Theorem 2. Suppose ETIBE is a selective-ID secure TIBE and S is existentially
unforgeable under a one chosen message attack. Then the TPKE system above
is chosen ciphertext secure.

Proof. Suppose A has non-negligible advantage in attacking the TPKE above.
First, suppose AdvCCAA,n,k(Λ) > 1/Λc for some c > 0, and sufficiently large
Λ. We build an algorithm that either breaks the TIBE or breaks the signature
scheme. We start with an algorithm B that breaks the TIBE. Algorithm B uses
A to interact with a TIBE challenger as follows:

Initialization. Algorithm B runs A to obtain a list S ⊂ {1, . . . , n} of the k− 1
servers that A wishes to corrupt. Next, B runs SigKeyGen(Λ) to obtain a
signing key SigK∗ and a verification key VerK∗. It outputs the set S and the
identity ID∗ = VerK∗ to the TIBE challenger.



Setup. The TIBE challenger runs Setup(n, k, Λ) to obtain (PK,VK,SK). It gives
B the values PK, VK, and all (j, SKj) for j ∈ S. Algorithm B forwards these
values to A.

Query phase 1. A adaptively issues decryption queries of the form (C, i) where
C = (C0,VerK, σ) and i ∈ {1, . . . , n}. For each such query:
1. B runs SigVerify(VerK, C0, σ) and ValidateCTTIBE(PK,VerK, C0). If ei-

ther output is invalid, algorithm B responds to A’s query with µ =
(i,⊥).

2. Otherwise, in the unlikely event that VerK = VerK∗, algorithm B moves
to the challenge phase, picks a random b′ ∈ {0, 1} as its guess for b,
outputs b′, and aborts the simulation.

3. Otherwise, B issues an identity query (ID = VerK, i) to the TIBE chal-
lenger and obtains a private key share θ in return. It gives the decryption
share µ = θ to A.

Challenge. A outputs two equal length messages M0 and M1. Algorithm B
forwards M0 and M1 to the TIBE challenger. Recall that the challenge iden-
tity ID∗ was set during initialization to ID∗ = VerK∗. The TIBE challenger
responds with the encryption C∗

0 of Mb under ID∗ for some b ∈ {0, 1}. Algo-
rithm B then runs Sign(SigK∗, C∗

0 ) to obtain a signature σ∗. It gives A the
challenge ciphertext C∗ = (C∗

0 ,VerK∗, σ∗).
Query phase 2. AlgorithmA continues to issue decryption queries (C, i) where

C = (C0,VerK, σ) and C 6= C∗. Algorithm B responds as in the query phase
1; in particular if VerK = VerK∗ then B picks a random b′ ∈ {0, 1} as its
guess for b, outputs b′ and aborts the simulation.

Guess. Eventually, A outputs its guess b′ ∈ {0, 1} for b. Algorithm B forwards
b′ to the TIBE challenger and wins the game if b = b′.

This completes the description of algorithm B. Let AdvIND-IDB,n,k(Λ) be B’s
advantage in winning the TIBE game above. Let AdvCCAA,n,k(Λ) be A’s advan-
tage in winning the TPKE game. Let abort be the event that B aborted during
the simulation in query phase 1 or 2.

As long as event abort does not happen, B’s simulation of a TPKE challenger
is perfect. Therefore,

|AdvIND-IDB,n,k(Λ)− AdvCCAA,n,k(Λ)| < Pr[abort] (1)

Now, observe that when event abort happens, then B obtains an existential
forgery for the signature public key VerK∗. If abort happens in query phase 1
then the forgery is obtained with no chosen message queries. If abort happens
in query phase 2 then the forgery is obtained after one chosen message query.
Either way, we obtain an algorithm, C, that produces an existential forgery on
the signature scheme S with probability Pr[abort] using at most one chosen
message query. Hence, AdvSigC = Pr[abort]. It now follows from (1) that

AdvIND-IDB,n,k(Λ) + AdvSigC(Λ) > AdvCCAA,n,k(Λ)

Therefore, if AdvCCAA,n,k(Λ) is a non-negligible function then at least one of
AdvIND-IDB,n,k(Λ) or AdvSigC(Λ) must also be non-negligible, as required.



To complete the proof of Theorem 2 we need to argue that AdvCDA,n,k(Λ)
is a negligible function. Suppose, AdvCDA,n,k(Λ) is non-negligible. Then we im-
mediately obtain an algorithm B for which AdvCD-IDB,n,k(Λ) is non-negligible
contradicting the fact that ETIBE is a secure TIBE. To see this, suppose A
outputs (C,S, S′) that lets A win the TPKE decryption consistency game.
Let C = (C0,VerK, σ). Then ValidateCTTIBE(PK,VerK, C0) = valid, since
otherwise all shares in S and S′ must be of the form (j,⊥). Furthermore,
ShareVerifyTIBE(PK,VK,VerK, µ) = valid for all shares µ ∈ S, S′. Therefore,
the decryption shares in S and S′ are valid private key shares for ID = VerK. It
now follows that (VerK, C0, S, S′) is a tuple that wins the TIBE key generation
consistency game as required. This completes the proof of Theorem 2.

5 A Concrete Threshold Public Key System

Our full non-interactive, CCA2-secure, threshold PKE system is immediately
obtained by applying the generic transformation of Sections 4 to the threshold
IBE system of Section 3. The construction in described in Appendix A. We
outline the properties of the system.

Recall that the TIBE of Section 3 worked for identities in Z∗
p where p was

the order of the bilinear groups G. To apply the conversion method we need
identities that are public keys of a signature system. Such identities may not
be elements of Z∗

p. Therefore, the threshold system described in the appendix
uses a collision resistant hash H to hash arbitrary identities into Z∗

p. Security, of
course, depends on the BDH assumption, security of the signature system, and
the collision resistance of H.

The security of the TPKE scheme follows immediately from that of the un-
derlying TIBE of Section 3 and the generic conversion from TIBE to TPKE from
Section 4. We thus have the following corollary.

Corollary 3 The system in Appendix A is chosen ciphertext secure assuming
the BDH assumption holds for GG, the signature scheme is existentially unforge-
able under a one chosen message attack, and the hash function H is collision
resistant.

Thus, we are able to construct a CCA2-secure threshold public key system,
without random oracles, in which there is no interaction needed between the
decryption parties. The reason we are able to avoid interaction is that using the
method of [10] anyone can check that a ciphertext is valid. In the Cramer-Shoup
framework only parties possessing the private key can check ciphertext validity,
which makes threshold decryption non-trivial.

The system includes additional tests during ShareDecrypt and Decrypt to
provide robustness against misbehaving servers. These tests are possible with no
additional information due to the fact that the DDH problem is easy in bilinear
groups. In particular, we are able to test that a given IBE private key is valid
for a given identity and that a given IBE ciphertext is a valid encryption under
a given identity.



We note that a more efficient transformation from IBE to CCA2-secure
public-key encryption was presented by Boneh and Katz [6]. Because that trans-
formation uses MACs and commitments instead of signatures, only parties pos-
sessing the private key can check ciphertext validity. As a result, the method
of [6] does not lend itself to the construction of non-interactive CCA2-secure
threshold systems. This is the primary reason why, in the above construction,
we had to use the original transformation of [10] based on signatures (or one-time
signatures). An elegant alternative was recently proposed in [7].

6 Extensions

Distributed key generation. In the TPKE system of Section 5 one need not rely
on a trusted dealer to issue shares to the decryption servers. One can generate a
public key and shares of a private key using standard distributed key generation
techniques used for ElGamal encryption [31, 21].

Proactive refresh. Proactive refresh enables the decryption servers to refresh
their shares of the secret decryption key, without changing the key. Periodic
proactive refresh make it harder for an adversary to recover k shares of the secret
key, since he must recover all k shares within one time period. The standard
proactive refresh techniques of [30, 24, 17] used for ElGamal encryption also apply
to our Threshold PKE.

7 Conclusions

We presented a simple non-interactive threshold encryption system that is cho-
sen ciphertext secure without random oracles. The construction illustrates the
benefits of building chosen ciphertext security from identity based encryption.
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A Description of the Full TPKE System

We give an explicit description of the full non-interactive CCA2-secure threshold
PKE system from Section 5. It is obtained by directly composing the construc-
tions given in Sections 3 and 4. The system works as follows:

Setup(n, k, Λ). Run the group generator GG(Λ) to obtain a bilinear group G of
prime order p > n. Select random generators g, g2, h1 in G, and a random
degree k − 1 polynomial f ∈ Zp[X]. Set α = f(0) ∈ Zp and g1 = gα.
The public key PK consist of PK = (G, g, g1, g2, h1). For i = 1, . . . , n the
secret key SKi of server i is defined as SKi = g

f(i)
2 . The public verification

key VK consists of PK along with the n-tuple (gf(1), . . . , gf(n)).
We will also need a collision resistant hash function H that outputs digests
in Zp, and a signature scheme (SigKeyGen, Sign, SigVerify) that is strongly
existentially unforgeable against one chosen message attacks. Both H and
the signature scheme are part of PK, but we leave them as implicit members
to simplify the presentation.

Encrypt(PK,M). To encrypt a message M ∈ G1 under the public key PK =
(g, g1, g2, h1), first run SigKeyGen to obtain a signing key SigK and a signa-
ture verification key VerK. Let ID = H(VerK). Next, pick a random s ∈ Zp

and compute

C0 =
(

e(g1, g2)s ·M, gs, gs·ID
1 hs

1

)
Let σ = Sign(SigK, C0) be a signature on C0 using the signing key SigK.
Output the ciphertext C = (C0,VerK, σ).

ShareDecrypt(PK,SKi, C). Decryption server i uses its private key share SKi

to partially decrypt a ciphertext C = (C0,VerK, σ) as follows. First, run
algorithm SigVerify(VerK, C0, σ) to check that σ is a valid signature of C



under VerK. Also let ID = H(VerK) and test whether e(B, gID
1 h1) = e(C1, g).

If either condition fails, output µ = (i,⊥) and exit.
Otherwise, C is well-formed, and the decryption server i needs to output a
share of the private key needed to decrypt C0. To do so, it picks a random
r in Zp, and outputs the decryption share µi = (i, (w0, w1)), where

w0 = SKi · (gID
1 h1)r and w1 = gr

Notice that (w0, w1) is an IBE private key share corresponding to the identity
ID = H(VerK).

ShareVerify(PK,VK, C, µi). To verify that µi is a correct partial decryption of
the ciphertext C = (C0,VerK, σ) = ((A,B, C1),VerK, σ), first run algorithm
SigVerify(VerK, C0, σ) to check that σ is a valid signature of C0 under VerK.
Also let ID = H(VerK) and test whether e(B, gID

1 h1) = e(C1, g). We say that
C is well-formed if both tests succeed.
1. If C is not well-formed: if µi is of the form (i,⊥) then output valid and

exit, otherwise output invalid and exit.
2. If C is well-formed and µi is of the form (i,⊥), then output invalid

and exit.
3. Otherwise, C is well-formed and µi = (i, (w0, w1)). In this case, let VK =

(u1, . . . , un) where ui = gf(i), and output valid or invalid according
to whether the following equation holds or not:

e(ui, g2) · e(gID
1 h1, w1) = e(g, w0)

Combine(PK,VK, C, {µ1, . . . , µk}). To decrypt a ciphertext C = (C0,VerK, σ)
using the partial decryptions µ1, . . . , µk, first check that all shares µi =
(i, µ̂i) bear distinct server indices i, and that they are all valid, i.e., that all
ShareVerify(PK,VK, C0, µi) = valid; otherwise output ⊥ and exit.
Without loss of generality, assume that the shares µ1, . . . , µk were generated
by the decryption servers i = 1, . . . , k, respectively. The combiner proceeds
as follows:
1. If any partial decryption µi is of the form (i,⊥), then output ⊥ and exit.
2. Otherwise, all shares µ1, . . . , µk are of the form µi = (i, (wi,0, wi,1)) with

distinct i, and SigVerify(VerK, C0, σ) and ValidateCT(PK,H(VerK), C0)
must both succeed. Determine the Lagrange coefficients λ1, . . . , λk ∈ Zp

so that α = f(0) =
∑k

i=1 λif(i), and set

w0 =
∏k

i=1 wλi
i,0 and w1 =

∏k
i=1 wλi

i,1

3. Use (w0, w1) to decrypt C0 = (A,B, C1), as

M = A · e(B,w0)/e(C1, w1)

Observe that the above decryption goes through since as we observed earlier
w0 = gα

2 · (gID
1 h1)r̄ and w1 = gr̄ for some r̄ ∈ Zp, hence (w0, w1) is an IBE

private key corresponding to ID = H(VerK).


