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Abstract

We construct a short group signature scheme. Signatures in our scheme are approximately
the size of a standard RSA signature with the same security. Security of our group signature
is based on the Strong Diffie-Hellman assumption and a new assumption in bilinear groups
called the Decision Linear assumption. We prove security of our system, in the random oracle
model, using a variant of the security definition for group signatures recently given by Bellare,
Micciancio, and Warinschi.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [14], provide anonymity for signers. Any
member of the group can sign messages, but the resulting signature keeps the identity of the signer
secret. In some systems there is a third party that can trace the signature, or undo its anonymity,
using a special trapdoor. Some systems support revocation [12, 4, 30, 15] where group membership
can be selectively disabled without affecting the signing ability of unrevoked members. Currently,
the most efficient constructions [2, 12, 4] are based on the Strong-RSA assumption introduced by
Baric and Pfitzman [5].

In the last two years a number of projects have emerged that require the properties of group
signatures. The first is the Trusted Computing effort [29] that, among other things, enables a
desktop PC to prove to a remote party what software it is running via a process called attestation.
Group signatures are needed for privacy-preserving attestation [11] [18, Sect. 2.2]. Perhaps an even
more relevant project is the Vehicle Safety Communications (VSC) system from the Department of
Transportation in the U.S. [19]. The system embeds short-range transmitters in cars; these transmit
status information to other cars in close proximity. For example, if a car executes an emergency
brake, all cars in its vicinity are alerted. To prevent message spoofing, all messages in the system
are signed by a tamper-resistant chip in each car. (MACs were ruled out for this many-to-many
broadcast environment.) Since VSC messages reveal the speed and location of the car, there is
a strong desire to provide user privacy so that the full identity of the car sending each message
is kept private. Using group signatures, where the group is the set of all cars, we can maintain
privacy while still being able to revoke a signing key in case the tamper resistant chip in a car is
compromised. Due to the number of cars transmitting concurrently there is a hard requirement
that the length of each signature be under 250 bytes.

The two examples above illustrate the need for efficient group signatures. The second example
also shows the need for short group signatures. Currently, group signatures based on Strong-RSA
are too long for this application.
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We construct short group signatures whose length is under 200 bytes that offer approximately
the same level of security as a regular RSA signature of the same length. The security of our
scheme is based on the Strong Diffie-Hellman (SDH) assumption [8] in groups with a bilinear map.
We also introduce a new assumption in bilinear groups, called the Linear assumption, described
in Section 3.2. The SDH assumption was recently used by Boneh and Boyen to construct short
signatures without random oracles [8]. A closely related assumption was used by Mitsunari et
al. [23] to construct a traitor-tracing system. The SDH assumption has similar properties to the
Strong-RSA assumption. We use these properties to construct our short group signature scheme.
Our results suggest that systems based on SDH are simpler and shorter than their Strong-RSA
counterparts.

Our system is based on a new Zero-Knowledge Proof of Knowledge (ZKPK) of the solution to
an SDH problem. We convert this ZKPK to a group signature via the Fiat-Shamir heuristic [16]
and prove security in the random oracle model. Our security proofs use a variant of the security
model for group signatures proposed by Bellare, Micciancio, and Warinschi [6].

Recently, Camenisch and Lysyanskaya [13] proposed a signature scheme with efficient proto-
cols for obtaining and proving knowledge of signatures on committed values. They then derive a
group signature scheme using these protocols as building blocks. Their signature scheme is based
on the LRSW assumption [22], which, like SDH, is a discrete-logarithm-type assumption. Their
methodology can also be applied to the SDH assumption, yielding a different SDH-based group
signature.

The SDH group signature we construct is very flexible and we show how to add a number of
features to it. In Section 6 we show how to apply the revocation mechanism of Camenisch and
Lysyanskaya [12]. In Section 7 we briefly sketch how to add strong exculpability.

2 Bilinear Groups

We first review a few concepts related to bilinear maps. We follow the notation of [9]:

1. G1 and G2 are two (multiplicative) cyclic groups of prime order p;

2. g1 is a generator of G1 and g2 is a generator of G2;

3. ψ is a computable isomorphism from G2 to G1, with ψ(g2) = g1; and

4. e is a computable map e : G1 ×G2 → GT with the following properties:

• Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g1, g2) 6= 1.

Throughout the paper, we consider bilinear maps e : G1×G2 → GT where all groups G1, G2, GT

are multiplicative and of prime order p. One could set G1 = G2. However, we allow for the more
general case where G1 6= G2 so that our constructions can make use of certain families of non-
supersingular elliptic curves defined by Miyaji et al. [24]. In this paper we only use the fact that
G1 can be of size approximately 2170, elements in G1 are 171-bit strings, and that discrete log in
G1 is as hard as discrete log in Z∗

q where q is 1020 bits. We will use these groups to construct short
group signatures. We note that the bilinear groups of Rubin and Silverberg [26] can also be used.

We say that two groups (G1, G2) as above are a bilinear group pair if the group action in G1

and G2, the map ψ, and the bilinear map e are all efficiently computable.
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The isomorphism ψ is only needed for the proofs of security. To keep the discussion general, we
simply assume that ψ exists and is efficiently computable. (When G1, G2 are subgroups of the group
of points of an elliptic curve E/Fq, the trace map on the curve can be used as this isomorphism.
In this case, G1 ⊆ E(Fq) and G2 ⊆ E(Fqr).)

3 Complexity Assumptions

3.1 The Strong Diffie-Hellman Assumption

Let G1, G2 be cyclic groups of prime order p, where possibly G1 = G2. Let g1 be a generator of G1

and g2 a generator of G2. Consider the following problem:

q-Strong Diffie-Hellman Problem. The q-SDH problem in (G1, G2) is defined as follows: given
a (q + 2)-tuple (g1, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 ) as input, output a pair (g1/(γ+x)

1 , x) where x ∈ Z∗
p.

An algorithm A has advantage ε in solving q-SDH in (G1, G2) if

Pr
[
A(g1, g2, g

γ
2 , . . . , g

(γq)
2 ) = (g

1
γ+x

1 , x)
]
≥ ε ,

where the probability is over the random choice of generator g2 in G2 (with g1 ← ψ(g2)), of
γ in Z∗

p, and of the random bits of A.

Definition 3.1. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if no t-time algorithm
has advantage at least ε in solving the q-SDH problem in (G1, G2).

Occasionally we drop the t and ε and refer to the q-SDH assumption rather than the (q, t, ε)-SDH
assumption. The q-SDH assumption was recently used by Boneh and Boyen [8] to construct a short
signature scheme without random oracles. To gain confidence in the assumption they prove that it
holds in generic groups in the sense of Shoup [28]. The q-SDH assumption has similar properties
to the Strong-RSA assumption [5]. We use these properties to construct our short group signature
scheme. Mitsunari et al. [23] use a related assumption where x is pre-specified rather than chosen
by the adversary.

3.2 The Decision Linear Diffie-Hellman Assumption

With g1 ∈ G1 as above, along with arbitrary generators u, v, and h of G1, consider the following
problem:

Decision Linear Problem in G1. Given u, v, h, ua, vb, hc ∈ G1 as input, output yes if a+ b = c
and no otherwise.

One can easily show that an algorithm for solving Decision Linear in G1 gives an algorithm for
solving DDH in G1. The converse is believed to be false. That is, it is believed that Decision Linear
is a hard problem even in bilinear groups where DDH is easy (e.g., when G1 = G2). More precisely,
we define the advantage of an algorithm A in deciding the Decision Linear problem in G1 as

Adv LinearA
def=

∣∣∣∣∣∣ Pr
[
A(u, v, h, ua, vb, ha+b) = yes : u, v, h R← G1, a, b

R← Zp

]
− Pr

[
A(u, v, h, ua, vb, η) = yes : u, v, h, η R← G1, a, b

R← Zp

] ∣∣∣∣∣∣ .

The probability is over the uniform random choice of the parameters to A, and over the coin tosses
of A. We say that an algorithm A (t, ε)-decides Decision Linear in G1 if A runs in time at most t,
and Adv LinearA is at least ε.
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Definition 3.2. We say that the (t, ε)-Decision Linear Assumption (LA) holds in G1 if no t-time
algorithm has advantage at least ε in solving the Decision Linear problem in G1.

In Section 8 we show that the Decision Linear Assumption holds in generic bilinear groups [28].

3.2.1 Linear Encryption

The Decision Linear problem gives rise to the Linear encryption (LE) scheme, a natural extension of
ElGamal encryption. Unlike ElGamal encryption, Linear encryption can be secure even in groups
where a DDH-deciding algorithm exists. In this scheme, a user’s public key is a triple of generators
u, v, h ∈ G1; her private key is the exponents x, y ∈ Zp such that ux = vy = h. To encrypt a
message M ∈ G1, choose random values a, b ∈ Zp, and output the triple (ua, vb,m · ha+b). To
recover the message from an encryption (T1, T2, T3), the user computes T3/(T x

1 · T
y
2 ). By a natural

extension of the proof of security of ElGamal, LE is semantically secure against a chosen-plaintext
attack, assuming Decision-LA holds.

4 A Zero-Knowledge Protocol for SDH

We are now ready to present the underlying building block for our group signature scheme. We
present a protocol for proving possession of a solution to an SDH problem. The public values are
g1, u, v, h ∈ G1 and g2, w ∈ G2. Here u, v, h are random in G1, g2 is a random generator of G2,
g1 equals ψ(g2), and w equals gγ

2 for some (secret) γ ∈ Zp. The protocol proves possession of a pair
(A, x), where A ∈ G1 and x ∈ Zp, such that Ax+γ = g1. Such a pair satisfies e(A,wgx

2 ) = e(g1, g2).
We use a standard generalization of Schnorr’s protocol for proving knowledge of discrete logarithm
in a group of prime order [27].

Protocol 1. Alice, the prover, selects exponents α, β R← Zp, and computes a Linear encryption
of A:

T1 ← uα T2 ← vβ T3 ← Ahα+β . (1)

She also computes two helper values δ1 ← xα and δ2 ← xβ ∈ Zp.
Alice and Bob then undertake a proof of knowledge of values (α, β, x, δ1, δ2) satisfying the

following five relations:

uα = T1 vβ = T2

e(T3, g2)x · e(h,w)−α−β · e(h, g2)−δ1−δ2 = e(g1, g2)/e(T3, w)

T x
1 u

−δ1 = 1 T x
2 v

−δ2 = 1 .

This proof of knowledge of (α, β, x, δ1, δ2) proceeds as follows. Alice picks blinding values rα,
rβ, rx, rδ1 , and rδ2 at random from Zp. She computes five values based on all these:

R1 ← urα R2 ← vrβ

R3 ← e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1
−rδ2 (2)

R4 ← T rx
1 · u

−rδ1 R5 ← T rx
2 · v

−rδ2 .

She then sends (T1, T2, T3, R1, R2, R3, R4, R5) to the verifier. Bob, the verifier, sends a challenge
value c chosen uniformly at random from Zp. Alice computes and sends back the values

sα ← rα + cα sβ ← rβ + cβ sx ← rx + cx sδ1 ← rδ1 + cδ1 sδ2 ← rδ2 + cδ2 . (3)
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Finally, Bob verifies the following five equations:

usα ?= T c
1 ·R1 (4)

vsβ
?= T c

2 ·R2 (5)

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2

?=
(
e(g1, g2)/e(T3, w)

)c ·R3 (6)

T sx
1 · u

−sδ1
?= R4 (7)

T sx
2 · v

−sδ2
?= R5 . (8)

Bob accepts if all five hold.

Theorem 4.1. Protocol 1 is an honest-verifier zero-knowledge proof of knowledge of an SDH pair
under the Decision Linear assumption.

The proof of the theorem follows from the following lemmas that show that the protocol is (1)
complete (the verifier always accepts an interaction with an honest prover), (2) zero-knowledge
(can be simulated), and (3) a proof of knowledge (has an extractor).

Lemma 4.2. Protocol 1 is complete.

Proof. If Alice is an honest prover in possession of an SDH pair (A, x) she follows the computations
specified for her in the protocol. In this case,

usα = urα+cα = (uα)c · urα = T c
1 ·R1 ,

so (4) holds. For analogous reasons (5) holds. Further,

T sx
1 u−sδ1 = (uα)rx+cxu−rδ1

−cxα = (uα)rxu−rδ1 = T rx
1 u−rδ1 = R4 ,

so (7) holds. For analogous reasons (8) holds. Finally,

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2

= e(T3, g2)rx+cx · e(h,w)−rα−rβ−cα−cβ · e(h, g2)−rδ1
−rδ2

−cxα−cxβ

= e(T3, g
x
2 )c · e(h−α−β , wgx

2 )c ·
(
e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1

−rδ2

)
= e(T3h

−α−β , wgx
2 )c · e(T3, w)−c · (R3)

=
(
e(A,wgx

2 )/e(T3, w)
)c ·R3

=
(
e(g1, g2)/e(T3, w)

)c ·R3 .

so (6) holds.

Lemma 4.3. For an honest verifier, transcripts of Protocol 1 can be simulated, under the Decision
Linear assumption.

Proof. We describe a simulator that outputs transcripts of Protocol 1. The simulator begins by
picking A

R← G1 and α, β
R← Zp. It sets T1 ← uα, T2 ← vβ, and T3 ← Ahα+β. Assuming the

Decision Linear assumption holds on G1, the tuples (T1, T2, T3) generated by the simulator are
drawn from a distribution that is indistinguishable from the distribution output by any particular
prover.
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The remainder of this simulation does not assume knowledge of A, x, α, or β, so it can also
be used when T1, T2, and T3 are pre-specified. When the pre-specified (T1, T2, T3) are a random
Linear encryption of some A, the remainder of the transcript is simulated perfectly, as in a standard
simulation of a Schnorr proof of knowledge.

The simulator chooses a challenge c R← Zp and values sα, sβ, sx, sδ1 , sδ2
R← Zp. It computes

R1, R2, R3, R4, R5 as:

R1 ← usα · T−c
1 R2 ← vsβ · T−c

2 R4 ← T sx
1 · u

−sδ1 R5 ← T sx
2 · v

−sδ2

R3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2 ·

(
e(T3, w)/e(g1, g2)

)c
.

The resulting values clearly satisfy Equations (4)–(8). Furthemore, the values R1, R2, R3, R4, R5

are distributed as in a real transcript.
The simulator outputs the transcript (T1, T2, T3, R1, R2, R3, R4, R5, c, sα, sβ, sx, sδ1 , sδ2). As dis-

cussed above, this transcript is indistinguishable from transcripts of Protocol 1, assuming the
Decision Linear assumption holds.

Lemma 4.4. There exists an extractor for Protocol 1.

Proof. Suppose that an extractor can rewind a prover in the protocol above to the point just before
the prover is given a challenge c. At the first step of the protocol, the prover sends T1, T2, T3 and
R1, R2, R3, R4, R5. Then, to challenge value c, the prover responds with sα, sβ, sx, sδ1 , and sδ2 . To
challenge value c′ 6= c, the prover responds with s′α, s′β, s′x, s′δ1 , and s′δ2 . If the prover is convincing,
all five verification equations (4)–(8) hold for each set of values.

For brevity, let ∆c = c− c′, ∆sα = sα − s′α, and similarly for ∆sβ, ∆sx, ∆sδ1 , and ∆sδ2 .
Now consider (4) above. Dividing the two instances of this equation (one instance using c and

the other using c′), we obtain u∆sα = T∆c
1 . The exponents are in a group of known prime order,

so we can take roots; let α̃ = ∆sα/∆c. Then uα̃ = T1. Similarly, from (5), we obtain β̃ = ∆sβ/∆c
such that vβ̃ = T2.

Consider (7) above. Dividing the two instances gives T∆sx
1 = u∆sδ1 . Substituting T1 = uα̃ gives

uα̃∆sx = u∆sδ1 , or ∆sδ1 = α̃∆sx. Similarly, from (8) we deduce that ∆sδ2 = β̃∆sx.
Finally, dividing the two instances of (6), we obtain(

e(g1, g2)/e(T3, w)
)∆c = e(T3, g2)∆sx · e(h,w)−∆sα−∆sβ · e(h, g2)−∆sδ1

−∆sδ2

= e(T3, g2)∆sx · e(h,w)−∆sα−∆sβ · e(h, g2)−α̃∆sx−β̃∆sx .

Taking ∆c-th roots, and letting x̃ = ∆sx/∆c, we obtain

e(g1, g2)/e(T3, w) = e(T3, g2)x̃ · e(h,w)−α̃−β̃ · e(h, g2)−x̃(α̃+β̃) .

This can be rearranged as
e(g1, g2) = e(T3h

−α̃−β̃, wgx̃
2 ) ,

or, letting Ã = T3h
−α̃−β̃ ,

e(Ã, wgx̃
2 ) = e(g1, g2) .

Thus the extractor obtains an SDH tuple (Ã, x̃). Moreover, the Ã in this SDH tuple is, perforce,
the same as that in the Linear encryption (T1, T2, T3).
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5 Short Group Signatures from SDH

Armed with Theorem 4.1, we obtain from Protocol 1 a regular signature scheme secure in the
random oracle model by applying the Fiat-Shamir heuristic [16, 1]. Signatures obtained from a
proof of knowledge via the Fiat-Shamir heuristic are often called signatures of knowledge. The
resulting signature scheme is, in fact, also a group signature scheme and we describe it as such.
In our construction we use a variant of the Fiat-Shamir heuristic, used also by Ateniese et al. [2],
where the challenge c rather than the values R1, . . . , R5 is transmitted in the signature; the output
of the random oracle acts as a checksum for those values not transmitted.

In describing the group signature, we use the terminology of Bellare et al. [6]. Consider a
bilinear group pair (G1, G2) with a computable isomorphism ψ, as in Section 2. Suppose further
that the SDH assumption holds on (G1, G2), and the Linear assumption holds on G1. The scheme
employs a hash function H : {0, 1}∗ → Zp, treated as a random oracle in the proof of security.

KeyGen(n). This randomized algorithm takes as input a parameter n, the number of members of
the group, and proceeds as follows. Select a generator g2 in G2 uniformly at random, and set
g1 ← ψ(g2). Select h R← G1\{1G1} and ξ1, ξ2

R← Z∗
p, and set u, v ∈ G1 such that uξ1 = vξ2 = h.

Select γ R← Z∗
p, and set w = gγ

2 .

Using γ, generate for each user i, 1 ≤ i ≤ n, an SDH tuple (Ai, xi): select xi
R← Z∗

p, and set

Ai ← g
1/(γ+xi)
1 ∈ G1.

The group public key is gpk = (g1, g2, h, u, v, w). The private key of the group manager
(the party able to trace signatures) is gmsk = (ξ1, ξ2). Each user’s private key is her tuple
gsk[i] = (Ai, xi). No party is allowed to possess γ; it is only known to the private-key issuer.

Sign(gpk,gsk[i],M). Given a group public key gpk = (g1, g2, h, u, v, w), a user’s key gsk[i] =
(Ai, xi), and a message M ∈ {0, 1}∗, compute the signature as follows:

1. Compute the values T1, T2, T3, R1, R2, R3, R4, R5 as specified in the first round of Proto-
col 1 (Equations (1) and (2)).

2. Compute a challenge c using the hash function as:

c← H(M,T1, T2, T3, R1, R2, R3, R4, R5) ∈ Zp . (9)

3. Using c construct the values sα, sβ , sx, sδ1 , sδ2 as in the third round of Protocol 1 (Equa-
tion (3)).

4. Output the signature σ, computed as σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2).

Verify(gpk,M, σ). Given a group public key gpk = (g1, g2, h, u, v, w), a message M , and a group
signature σ, verify that σ is a valid signature as follows:

1. Use Equations (4)–(8) to re-derive R1, R2, R3, R4, and R5 as follows:

R̃1 ← usα · T−c
1 R̃2 ← vsβ · T−c

2 R̃4 ← T sx
1 · u

−sδ1 R̃5 ← T sx
2 · v

−sδ2 (10)

R̃3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2 ·

(
e(T3, w)/e(g1, g2)

)c
.

2. Check that these, along with the other first-round values included in σ, give the chal-
lenge c, i.e., that

c
?= H(M,T1, T2, T3, R̃1, R̃2, R̃3, R̃4, R̃5) . (11)

Accepts if this check succeeds and reject otherwise.
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Open(gpk, gmsk,M, σ). This algorithm is used for tracing a signature to a signer. It takes as
input a group public key gpk = (g1, g2, h, u, v, w) and the corresponding group manager’s
private key gmsk = (ξ1, ξ2), together with a message M and a signature σ = (T1, T2, T3, c,
sα, sβ, sx, sδ1 , sδ2) to trace, and proceeds as follows. First, verify that σ is a valid signature
onM . Second, consider the first three elements (T1, T2, T3) as a Linear encryption, and recover
the user’s A as A ← T3/(T

ξ1
1 · T

ξ2
2 ), following the decryption algorithm given at the end of

Section 3.2.1. If the group manager is given the elements {Ai} of the users’ private keys, he
can look up the user index corresponding to the identity A recovered from the signature.

Signature Length. A group signature in the system above comprises three elements of G1 and
six elements of Zp. Using any of the families of curves described in [9], one can take p to be a
170-bit prime and use a group G1 where each element is 171 bits. Thus, the total group signature
length is 1533 bits or 192 bytes. With these parameters, security is approximately the same as a
standard 1024-bit RSA signature, which is 128 bytes.

Performance. The pairings e(h,w), e(h, g2), and e(g1, g2) can be precomputed and cached by
both signers and verifiers. The signer can cache e(A, g2), and, when signing, compute e(T3, g2)
without evaluating a pairing. Accordingly, creating a group signature requires eight exponentiations
(or multi-exponentiations) and no pairing computations. The verifier can derive R̃3 efficiently by
collapsing the e(T3, g2)sx and e(T3, w)c pairings into a single e(T3, w

cgsx
2 ) term. Thus verifying a

group signature requires six multi-exponentiations and one pairing computation. With parameters
selected as above, the exponents are in every case 170-bit numbers. For the signer, all bases for
exponentiation are fixed, which allows further speedup by precomputation.

5.1 Group Signature Security

We now turn to proving security of the system. Bellare et al. [6] give three properties that a group
signature scheme must satisfy:

• correctness, which ensures that honestly-generated signatures verify and trace correctly;

• full-anonymity, which ensures that signatures do not reveal their signer’s identity; and

• full-traceability, which ensures that all signatures, even those created by the collusion of
multiple users and the group manager, trace to a member of the forging coalition.

For the details of the definitions, see Bellare et al. [6]. We prove the security of our scheme
using a variation of these properties. In our proofs, we relax the full-anonymity requirement. As
presented [6, Sect. 2], the full-anonymity experiment allows the adversary to query the opening
(tracing) oracle before and after receiving the challenge σ. In this respect, the experiment mirrors
the indistinguishability experiment against an adaptive CCA2 adversary. We therefore rename this
experiment CCA2-full-anonymity. We define a corresponding experiment, CPA-full-anonymity, in
which the adversary cannot query the opening oracle. We prove privacy in this slightly weaker
model.

Access to the tracing functionality will likely be carefully controlled when group signatures are
deployed, so CPA-full-anonymity is a reasonable model to consider. In any case, anonymity and
unlinkability, the two traditional group signature security requirements implied by full anonymity [6,
Sect. 3], also follow from CPA-full-anonymity. Thus a fully-traceable and CPA-fully-anonymous
group signature scheme is still secure in the traditional sense.
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In the statements of the theorem, we use big-O notation to elide the specifics of additive terms in
time bounds, noting that, for given groups G1 and G2, operations such as sampling, exponentiation,
and bilinear map evaluation are all constant-time.

Theorem 5.1. The SDH group signature scheme is correct.

Proof. For any group public key gpk = (g1, g2, h, u, v, w), and for any user with key gsk[i] = (Ai, xi),
the key generation algorithm guarantees that Aγ+xi

i = g1, so (Ai, xi) is an SDH tuple for w = gγ
2 .

A correct group signature σ is a proof of knowledge, which is itself a transcript of the SDH protocol
given in Section 4. Verifying the signature entails verifying that the transcript is correct; thus
Lemma 4.2 shows that σ will always be accepted by the verifier.

Moreover, an honest signer outputs, as the first three components of any signature σ, values
(T1, T2, T3) = (uα, vβ , Ai · hα+β) for some α, β ∈ Zp. These values form a Linear encryption
of Ai under public key (u, v, h), which the group manager, possessing the corresponding private
key (ξ1, ξ2), can always recover. Therefore any valid signature will always be opened correctly.

Theorem 5.2. If Linear encryption is (t′, ε′)-semantically secure on G1 then the SDH group sig-
nature scheme is (t, qH , ε)-CPA-fully-anonymous, where ε = ε′ and t = t′ − qHO(1). Here qH is
the number of hash function queries made by the adversary and n is the number of members of the
group.

Proof. Suppose A is an algorithm that (t, qH , ε)-breaks the anonymity of the group signature
scheme. We show how to construct a t + qHO(1)-time algorithm B that breaks the semantic
security of Linear encryption from Section 3.2.1 with advantage at least ε.

Algorithm B is given a Linear encryption public key (u, v, h). It generates the remaining compo-
nents of the group signature public key by following the group signature’s key generation algorithm.
It then provides to A the group public key (g1, g2, h, u, v, w), and the users’ private keys (Ai, xi).

At any time, A can query the random oracle H. Algorithm B responds with elements selected
uniformly at random from Zp, making sure to respond identically to repeated queries.

Algorithm A requests its full-anonymity challenge by providing two indices, i0 and i1, and a
message M . Algorithm B, in turn, requests its indistinguishability challenge by providing the two
user private keys Ai0 and Ai1 as the messages whose Linear encryption it must distinguish. It
is given a Linear encryption (T1, T2, T3) of Aib , where bit b is chosen by the Linear encryption
challenger.

Algorithm B generates from this Linear encryption a protocol transcript (T1, T2, T3, R1, R2, R3,
R4, R5, c, sα, sβ, sx, sδ1 , sδ2) by means of the simulator of Lemma 4.3. This simulator can generate
a trace given (T1, T2, T3), even though B does not know α, β, or x. Since (T1, T2, T3) is a random
Linear encryption of Aib , the remainder of the transcript is distributed exactly as in a real protocol
with a prover whose secret A is Aib .

Algorithm B then patches H at (M,T1, T2, T3, R1, R2, R3, R4, R5) to equal c. It encounters
a collision only with negligible probability. In case of a collision, B declares failure and exits.
Otherwise, it returns the valid group signature σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2) to A.

Finally, A outputs a bit b′. Algorithm B returns b′ as the answer to its own challenge. Since the
encryption of Aib is turned by B into a group signature by user ib, B answers its challenge correctly
whenever A does.

The keys given to A, and the answers to A’s queries, are all valid and properly distributed.
Therefore A succeeds in breaking the anonymity of the group signature σ with advantage ε, and B
succeeds in distinguishing the Linear encryption (T1, T2, T3) with the same advantage.
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Algorithm B’s running time exceeds A’s by the amount it takes to answer A’s queries. Each
hash query can be answered in constant time, and there are at most qH of them. Algorithm B can
also create the challenge group signature σ in constant time. If A runs in time t, B runs in time
t+ qHO(1).

The following theorem proves full traceability of our system. The proof is based on the Forking
Lemma [25].

Theorem 5.3. If SDH is (q, t′, ε′)-hard on (G1, G2), then the SDH group signature scheme is
(t, qH , qS, n, ε)-fully-traceable, where n = q − 1, ε = 4n

√
2ε′qH + n/p, and t = Θ(1) · t′. Here qH is

the number of hash function queries made by the adversary, qS is the number of signing queries
made by the adversary, and n is the number of members of the group.

Proof. Our proof proceeds in three parts. First, we describe a framework for interacting with an
algorithm that wins a full-traceability game. Second, we show how to instantiate this framework
appropriately for different types of such breaker algorithms. Third, we show how to apply the
Forking Lemma [25] to the framework instances, obtaining SDH solutions.

Suppose we are given an algorithm A that breaks the full-traceability of the group signature
scheme. We describe a framework for interacting with A.

Setup. We are given groups (G1, G2) as above. We are given generators g1 and g2 such that
g1 = ψ(g2). We are also given w = gγ

2 ∈ G2, and a list of pairs (Ai, xi) for i = 1, . . . , n. For
each i, either xi = ?, indicating that the xi corresponding to Ai is not known, or else (Ai, xi)
is an SDH pair, and e(Ai, wg

xi
2 ) = e(g1, g2). We pick a generator h R← G1 \ {1G1} and values

ξ1, ξ2
R← Z∗

p, and compute u, v ∈ G1 such that uξ1 = vξ2 = h. We then run A, giving it the
group public key (g1, g2, h, u, v, w) and the group manager’s private key (ξ1, ξ2). We answer
its oracle queries as follows.

Hash Queries. When A asks for the hash of (M,T1, T2, T3, R1, R2, R3, R4, R5), we respond with
a random element of G1, memoizing the answer in case the same query is made again.

Signature Queries. Algorithm A asks for a signature on message M by a key at index i. If
xi 6= ?, we follow the group signing procedure with key (Ai, xi) to obtain a signature σ

on M , and return σ to A. If xi = ?, we pick α, β
R← Zp, set T1 ← uα, T2 = vβ , and

T3 ← Agα+β
1 and run the Protocol 1 simulator with values T1, T2, T3. The simulator returns

a transcript (T1, T2, T3, R1, R2, R3, R4, R5, c, sα, sβ, sx, sδ1 , sδ2), from which we derive a group
signature σ = (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2). In addition, we must patch the hash oracle at
(M,T1, T2, T3, R1, R2, R3, R4, R5) to equal c. If this causes a collision, i.e., if we previously set
the oracle at this point to some other c′, we declare failure and exit. Otherwise, we return σ
to A. A signature query can trigger a hash query, which we charge against A’s hash query
limit to simplify the accounting.

Private Key Queries. Algorithm A asks for the private key of the user at some index i. If xi 6= ?,
we return (Ai, xi) to A. Otherwise, we declare failure and exit.

Output. Finally, if algorithm A is successful, it outputs a forged group signature σ = (T1, T2, T3,
c, sα, sβ, sx, sδ1 , sδ2) on a message M . We use the group manager’s key (ξ1, ξ2) to trace σ,
obtaining some A∗. If A∗ 6= Ai for all i, we output σ. Otherwise, A∗ = Ai∗ for some i∗. If
si∗ = ?, we output σ. If, however, si∗ 6= ?, we declare failure and exit.
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As implied by the output phase of the framework above, there are two types of forger algorithm.
Type I forgers output a forgery σ on a message M that traces to some identity A∗ /∈ {A1, . . . , An}.
Type II forgers output a forgery that traces to an identity A∗ such that A∗ = Ai∗ for some i∗,
and the forger did not make a private-key oracle query at i∗. We treat these two types of forger
differently.

Given a q-SDH instance (g′1, g
′
2, (g

′
2)

γ , (g′2)
γ2
, . . . , (g′2)

γq
), we apply the technique of Boneh and

Boyen’s Lemma 3.2 [8], obtaining generators g1 ∈ G1, g2 ∈ G2, w = gγ
2 , and q − 1 SDH pairs

(Ai, xi) such that e(Ai, wg
xi
2 ) = e(g1, g2) for each i. Any SDH pair (A, x) besides these q − 1 pairs

can be transformed into a solution to the original q-SDH instance, again using Boneh and Boyen’s
Lemma 3.2.

Type I Forger. Against a (t, qH , qS, n, ε)-Type I forger A, we turn an instance of (n + 1)-SDH
into values (g1, g2, w), and n SDH pairs (Ai, xi). We then apply the framework to A with these
values. Algorithm A’s environment is perfectly simulated, and the framework succeeds whenever
A succeeds, so we obtain a Type I forgery with probability ε.

Type II Forger. Against a (t, qH , qS, n, ε)-Type II forger A, we turn an instance of n-SDH into
values (g1, g2, w), and n − 1 SDH pairs. These pairs we distribute amongst n pairs (Ai, xi). The
unfilled entry at random index i∗ we fill as follows. Pick Ai∗

R← G1, and set xi∗ ← ?, a placeholder
value. Now we run A under the framework. The framework declares success only if A never queries
the private key oracle at i∗, but forges a group signature that traces to Ai∗ . It is easy to see that the
framework simulation is perfect unless A queries the private key oracle at i∗. Because the protocol
simulator invoked by the signing oracle produces group signatures that are indistinguishable from
those of a user whose SDH tuple includes Ai∗ , the value of i∗ is independent of A’s view unless and
until it queries the private key oracle at i∗. (Since the hash oracle takes as input nine elements
of G1 or G2 besides the message M , the probability of collision in simulated signing queries is
bounded above by (qHqS + q2S)/p9. Assuming qS � qH � p = |G1|, this probability is negligible,
and we ignore it in the analysis.) Finally, when A outputs its forgery σ, implicating some user i
whose private key A has not requested, the value of i∗ (amongst the users whose keys it has not
requested) remains independent of A’s view. It is easy to see, then, that A outputs a forged group
signature that traces to user i∗ with probability at least ε/n.

Now we show how to use the application of our framework to a Type I or Type II adversary A to
obtain another SDH pair, contradicting the SDH assumption. The remainder of this proof follows
closely the methodology and notation of the Forking Lemma [25].

Let A be a forger (of either type) for which the framework succeeds with probability ε′. From
here on, we abbreviate signatures as (M,σ0, c, σ1), where σ0 = (T1, T2, T3, R1, R2, R3, R4, R5), the
values given, along with M , to the random oracle H, and from which c is derived, and where
σ1 = (sα, sβ , sx, sδ1 , sδ2). Those values normally omitted from the signature can be recovered as in
Equation (10).

A run of the framework on A is completely described by the randomness string ω used by the
framework andA, and by the vector f of responses made by the hash oracle. Let S be the set of pairs
(ω, h) such that the framework, invoked on A, completes successfully with forgery (M,σ0, c, σ1),
and A queried the hash oracle on (M,σ0). In this case, let Ind(ω, f) be the index of f at which A
queried (M,σ0). We define ν = Pr[S] = ε′ − 1/p, where the 1/p term accounts for the possibility
that A guessed the hash of (M,σ0) without the hash oracle’s help. For each j, 1 ≤ j ≤ qH , let
Sj be the set of pairs (ω, h) as above, and such that Ind(ω, f) = j. Let J be the set of auspicious
indices j such that Pr[Sj | S] ≥ 1/(2qH). Then Pr[Ind(ω, f) ∈ J | S] ≥ 1/2.
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Let f |ba be the restriction of f to its elements at indices a, a + 1, . . . , b. For each j ∈ J , we
consider the heavy-rows lemma [25, Lemma 1] with rows X = (ω, f |j−1

1 ) and columns Y = (f |qH
j ).

Clearly Pr(x,y)[(x, y) ∈ Sj ] ≥ ν/(2qH). Let the heavy rows Ωj be those rows such that, ∀(x, y) ∈
Ωj : Pry′ [(x, y′) ∈ Sj ] ≥ ν/(4qH). Then, by the heavy-rows lemma, Pr[Ωj | Sj ] ≥ 1/2. A simple
argument then shows that Pr[∃j ∈ J : Ωj ∩ Sj | S] ≥ 1/4.

Thus, with probability ν/4, the framework, invoked on A, succeeds and obtains a forgery
(M,σ0, c, σ1) that derives from a heavy row (x, y) ∈ Ωj for some j ∈ J , i.e., an execution (ω, f)
such Prf ′

[
(ω, f ′) ∈ Sj

∣∣ f ′|j−1
1 = f |j−1

1

]
≥ ν/(4qH).

If we now rewind the framework and A to the jth query, and proceed with an oracle vector f ′

that differs from f from the jth entry on, we obtain, with probability at least ν/(4qH), a successful
framework completion and a second forgery (M,σ0, c

′, σ′1), with (M,σ0) still queried at A’s jth
hash query.

By using the extractor of Lemma 4.4, we obtain from (σ0, c, σ1) and (σ0, c
′, σ′1) an SDH tuple

(A, x). The extracted A is the same as the A in the Linear encryption (T1, T2, T3) in σ0. The
framework declares success only when the A encrypted in (T1, T2, T3) is not amongst those whose x
it knows. Therefore, the extracted SDH tuple (A, x) is not amongst those that we ourselves created,
and can be transformed, again following the technique of Boneh and Boyen’s Lemma 3.2 [8], to an
answer to the posed q-SDH problem.

Putting everything together, we have proved the following claims.

Claim 1. Using a (t, qH , qS, n, ε)-Type I forger A, we solve an instance of (n+ 1)-SDH with prob-
ability (ε− 1/p)2/(16qH) in time Θ(1) · t.

Claim 2. Using a (t, qH , qS, n, ε)-Type II forger A, we solve an instance of n-SDH with probability
(ε/n− 1/p)2/(16qH) in time Θ(1) · t.

We can guess which of the two forger types a particular forger is with probability 1/2; then
assuming the more pessimistic scenario of Claim 2 proves the theorem.

6 Revocation

We now discuss how to revoke users in the SDH group signature scheme of Section 5. A number of
revocation mechanisms for group signatures have been proposed [4, 12]. All these mechanisms can
be applied to our system. Here we describe a revocation mechanism along the lines of [12].

Recall that the group’s public key in our system is (g1, g2, h, u, v, w) where w = gγ
2 ∈ G2 for

random γ ∈ Z∗
p and random h, u, v ∈ G1. User i’s private key is a pair (Ai, xi) where Ai =

g
1/(γ+xi)
1 ∈ G1.

Now, suppose we wish to revoke users 1, . . . , r without affecting the signing capability of
other users. To do so, the Revocation Authority (RA) publishes a Revocation List (RL) con-
taining the private keys of all revoked users. More precisely, RL = {(A∗

1, x1), . . . , (A∗
r , xr)}, where

A∗
i = g

1/(γ+xi)
2 ∈ G2. Note that Ai = ψ(A∗

i ). Here the SDH secret γ is needed to compute the A∗
i ’s.

In case G1 equals G2 then Ai = A∗
i and consequently the Revocation List can be derived directly

from the private keys of revoked users without having to use γ.
The list RL is given to all signers and verifiers in the system. It is used to update the group public

key used to verify signatures. Let y =
∏r

i=1(γ + xi) ∈ Z∗
p. The new public key is (ḡ1, ḡ2, h, u, v, w̄)

where ḡ1 = g
1/y
1 , ḡ2 = g

1/y
2 , and w̄ = (ḡ2)γ . We show that, given RL, anyone can compute this

new public key, and any unrevoked user can update her private key locally so that it is well formed
with respect to this new public key. Revoked users are unable to do so.
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We show how to revoke one private key at a time. By repeating the process r times (as the
revocation list grows over time) we can revoke all private keys on the Revocation List. We first show
how given the public key (g1, g2, h, u, v, w) and one revoked private key (A∗

1, x1) ∈ RL anyone can
construct the new public key (ĝ1, ĝ2, h, u, v, ŵ) where ĝ1 = g

1/(γ+x1)
1 , ĝ2 = g

1/(γ+x1)
2 , and ŵ = (ĝ2)γ .

This new public key is constructed simply as:

ĝ1 ← ψ(A∗
1) ĝ2 ← A∗

1 and ŵ ← g2 · (A∗
1)
−x1 ;

then ĝ1 = ψ(A1)∗ = g
1/(γ+x1)
1 and ŵ = g2 · (A∗

1)
−x1 = g

1− x1
γ+x1

2 = (A∗
1)

γ = (ĝ2)γ , as required.
Next, we show how unrevoked users update their own private keys. Consider an unrevoked

user whose private key is (A, x). Given a revoked private key, (A∗
1, x1) the user computes Â ←

ψ(A∗
1)

1/(x−x1)/A1/(x−x1) and sets his new private key to be (Â, x). Then, indeed,

(Â)γ+x = ψ(A∗
1)

γ+x
x−x1

/
A

γ+x
x−x1 = ψ(A∗

1)
(γ+x1)+(x−x1)

x−x1

/
g

1
x−x1
1 = ψ(A∗

1) = ĝ1 ,

as required. Hence, (Â, x) is a valid private key with respect to (ĝ1, ĝ2, h, u, v, ŵ).
By repeating this process r times (once for each revoked key in RL) anyone can compute the

updated public key (ḡ1, ḡ2, h, u, v, w̄) defined above. Similarly, an unrevoked user with private key
(A, x) can compute his updated private key (Ā, x) where Ā = (ḡ1)1/(γ+x). We note that it is
possible to process the entire RL at once (as opposed to one element at a time) and compute
(ḡ1, ḡ2, h, u, v, w̄) directly; however this is less efficient when keys are added to RL incrementally.

A revoked user cannot construct a private key for the new public key (ḡ1, ḡ2, h, u, v, w̄). In fact,
the proof of Theorem 5.3 shows that, if a revoked user can generate signatures for the new public
key (ḡ1, ḡ2, h, u, v, w̄), then that user can be used to break the SDH assumption. Very briefly, the
reason is that given an SDH challenge one can easily generate a public key tuple (ḡ1, ḡ2, h, u, v, w̄)
along with the private key for a revoked user (g1/(x+γ)

1 , x). Then an algorithm that can forge
signatures given these two tuples can be used to solve the SDH challenge.

In the revocation mechanism above a user is revoked by the publication of a value that exposes
that user’s private key. Consequently, it is crucial that updates to the revocation list be sent
simultanously to all verifiers. Otherwise, someone who obtains a new entry on the revocation list
can fool a verifier who has not yet updated its copy of the revocation list.

Brickell [11] proposes an alternate mechanism where revocation messages are only sent to sig-
nature verifiers, so that there is no need for unrevoked signers to update their keys. Similar
mechanisms were also considered by Ateniese et al. [4] and Kiayias et al. [20]. We refer to this as
Verifier-Local Revocation (VLR) group signatures. Boneh and Shacham [10] show how to modify
our group signature scheme to support this VLR revocation mechanism. Using this revocation
mechanism, only a fragment of the user’s private key is placed on the revocation list and hence the
limitation discussed in the previous paragraph is not an issue.

7 Exculpability

In Bellare et al. [6], exculpability (introduced by Ateniese and Tsudik [3]) is informally defined as
follows: No member of the group and not even the group manager —the entity that is given the
tracing key— can produce signatures on behalf of other users. Thus, no user can be framed for
producing a signature he did not produce. They argue that a group signature secure in the sense of
full-traceability also has the exculpability property. Thus, in the terminology of Bellare et al. [6],
our group signature has the exculpability property.
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A stronger notion of exculpability is considered in Ateniese et al. [2], where one requires that
even the entity that issues user keys cannot forge signatures on behalf of users. Formalizations of
strong exculpability have recently been proposed by Kiayias and Yung [21] and by Bellare, Shi, and
Zhang [7].

To achieve this stronger property the system of Ateniese et al. [2] uses a protocol (called JOIN)
to issue a key to a new user. At the end of the protocol, the key issuer does not know the full
private key given to the user and therefore cannot forge signatures under the user’s key.

Our group signature scheme can be extended to provide strong exculpability using a similar
mechanism. Instead of simply giving user i the private key (g1/(γ+xi)

1 , xi), the user and key issuer
engage in a JOIN protocol where at the end of the protocol user i has a triple (Ai, xi, yi) such that
Aγ+xi

i hyi
1 = g1 for some public parameter h1. The value yi is chosen by the user and is kept secret

from the key issuer. The ZKPK of Section 4 can be modified to prove knowledge of such a triple.
The resulting system is a short group signature with strong exculpability.

8 The Linear Problem in Generic Bilinear Groups

To provide more confidence in the Decision Linear assumption introduced in Section 3.2 we prove a
lower bound on the computational complexity of the Decision Linear problem for generic groups in
the sense of Shoup [28]. In this model, elements of G1, G2, and GT appear to be encoded as unique
random strings, so that no property other than equality can be directly tested by the adversary.
Five oracles are assumed to perform operations between group elements, such as computing the
group action in each of the three groups G1, G2, GT , as well as the isomorphism ψ : G2 → G1,
and the bilinear pairing e : G1 ×G2 → GT (where possibly G1 = G2). The opaque encoding of the
elements of G1 is modeled as an injective function ξ1 : Zp → Ξ1, where Ξ1 ⊂ {0, 1}∗, which maps
all a ∈ Zp to the string representation ξ1(ga) of ga ∈ G1. Analogous maps ξ2 : Zp → Ξ2 for G2 and
ξT : Zp → ΞT for GT are also defined. The attacker A communicates with the oracles using the
ξ-representations of the group elements only.

Let x, y, z, a, b, c R← Z∗
p, T0 ← gz(a+b), T1 ← gc, and d

R← {0, 1}. We show that no generic
algorithm A that is given the encodings of gx, gy, gz, gxa, gyb, Td, T1−d and makes up to q oracle
queries can guess the value of d with probability greater than 1

2 +O(q2/p). Note that here gx, gy,
and gz play the role of the generators u, v, and h in the Decision Linear problem definition.

Theorem 8.1. Let A be an algorithm that solves the Decision Linear problem in the generic group
model. Assume that ξ1, ξ2, ξT are random encoding functions for G1, G2, GT . If A makes a total
of at most q queries to the oracles computing the group action in G1, G2, GT , the isomorphism ψ,
and the bilinear pairing e, then

∣∣∣∣∣ Pr


A

( p, ξ1(1), ξ1(x), ξ1(y), ξ1(z),
ξ1(xa), ξ1(yb), ξ1(t0), ξ1(t1), ξ2(1)

)
= d :

x, y, z, a, b, c
R← Z∗

p, d
R← {0, 1},

td ← z(a+ b), t1−d ← c

− 1
2

∣∣∣∣∣ ≤ 8(q + 9)2

p
.

Proof. Consider an algorithm B that plays the following game with A.
B maintains three lists of pairs, L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i =

0, . . . , τ2−1}, LT = {(FT,i, ξT,i) : i = 0, . . . , τT −1}, under the invariant that, at step τ in the game,
τ1 +τ2 +τT = τ +9. Here, the F?,? ∈ Zp[X,Y, Z,A,B, T0, T1] are polynomials in the indeterminates
X,Y, Z,A,B, T0, T1 with coefficients in Zp. The ξ?,? ∈ {0, 1}∗ are arbitrary distinct strings.
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The lists are initialized at step τ = 0 by initializing τ1 ← 8, τ2 ← 1, τT ← 0, and setting
F1,0 = 1, F1,1 = X, F1,2 = Y , F1,3 = Z, F1,4 = XA, F1,5 = Y B, F1,6 = T0, F1,7 = T1, and F2,0 = 1.
The corresponding strings are set to arbitrary distinct strings in {0, 1}∗.

We may assume that A only makes oracle queries on strings previously obtained form B, since
B can make them arbitrarily hard to guess. We note that B can determine the index i of any given
string ξ1,i in L1 (resp. ξ2,i in L2, or ξT,i in LT ), where ties between multiple matches are broken
arbitrarily.
B starts the game by providing A with the encodings ξ1,0, ξ1,1, ξ1,2, ξ1,3, ξ1,4, ξ1,5, ξ1,6, and ξ2,0.

The simulator B responds to algorithm A’s queries as follows.

Group action. Given a multiply/divide selection bit and two operands ξ1,i and ξ1,j with 0 ≤
i, j < τ1, compute F1,τ1 ← F1,i ± F1,j depending on whether a multiplication or a division is
requested. If F1,τ1 = F1,l for some l < τ1, set ξ1,τ1 ← ξ1,l; otherwise, set ξ1,τ1 to a string in
{0, 1}∗ distinct from ξ1,0, . . . , ξ1,τ1−1. Add (F1,τ1 , ξ1,τ1) to the list L1 and give ξ1,τ1 to A, then
increment τ1 by one. Group action queries in G2 and GT are treated similarly.

Isomorphism. Given a string ξ2,i with 0 ≤ i < τ2, set F1,τ1 ← F2,i. If F1,τ1 = F1,l for some l < τ1,
set ξ1,τ1 ← ξ1,l; otherwise, set ξ1,τ1 to a string in {0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}. Add (F1,τ1 , ξ1,τ1)
to the list L1, and give ξ1,τ1 to A, then increment τ1 by one.

Pairing. Given two operands ξ1,i and ξ2,j with 0 ≤ i < τ1 and 0 ≤ j < τ2, compute the product
FT,τT

← F1,iF2,j . If FT,τT
= FT,l for some l < τT , set ξT,τT

← ξT,l; otherwise, set ξT,τT
to a

string in {0, 1}∗ \ {ξT,0, . . . , ξT,τT−1}. Add (FT,τT
, ξT,τT

) to the list LT , and give ξT,τT
to A,

then increment τT by one.

Observe that at any time in the game, the total degree of any polynomial in each of the three
lists is bounded as follows: deg(F1,i) ≤ 2, deg(F2,i) = 0 (or deg(F2,i) ≤ 2 if G1 = G2), and
deg(FT,i) ≤ 2 (or deg(FT,i) ≤ 4 if G1 = G2).

After at most q queries, A terminates and returns a guess d̂ ∈ {0, 1}. At this point B chooses
random x, y, z, a, b, c

R← Zp. Consider td ← z(a+b) and t1−d ← c for both choices of d ∈ {0, 1}. The
simulation provided by B is perfect and reveals nothing to A about d unless the chosen random
values for the indeterminates give rise to a non-trivial equality relation between the simulated group
elements that was not revealed to A, i.e., when we assign X ← x, Y ← y, Z ← z,A ← a,B ← b,
and either T0 ← z(a + b), T1 ← c or the converse T0 ← c, T1 ← z(a + b). This happens only if for
some i, j one of the following holds:

1. F1,i(x, y, z, a, b, z(a+ b), c)− F1,j(x, y, z, a, b, z(a+ b), c) = 0, yet F1,i 6= F1,j ,

2. F2,i(x, y, z, a, b, z(a+ b), c)− F2,j(x, y, z, a, b, z(a+ b), c) = 0, yet F2,i 6= F2,j ,

3. FT,i(x, y, z, a, b, z(a+ b), c)− FT,j(x, y, z, a, b, z(a+ b), c) = 0, yet FT,i 6= FT,j ,

4. any relation similar to the above in which z(a+ b) and c have been exchanged.

We first need to argue that the adversary is unable to engineer any of the above equalities,
so that they can only occur due to an unfortunate random choice of x, y, z, a, b, c. First, observe
that the adversary can only manipulate the polynomials on the three lists through additions and
substractions (disguised as multiplications and divisions in the groups G1, G2, and GT ) as well as
mutiplications between polynomials which are not the result of a previous multiplication (disguised
as pairings between elements of G1 and G2). Now, notice that in the initial population of the
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lists, the only occurrence of the variable A is within the monomial XA, the only occurrence of the
variable B is within the monomial Y B, and the only occurrence of the variable Z is by itself. Given
the available operations, it is easy to see that, in the three group representations:

1. the adversary is unable to generate any polynomial that contains at least one of the monomials
mZA and mZB for any integer m 6= 0, which is a prerequisite to synthesize a multiple of
Z(A+B) in G1 or G2 (recall that the maximum degree in those groups is 2);

2. the adversary is unable to simultaneously generate the terms FZA and FZB for any non-
zero monomial F of degree at most 2, which is a prerequisite to synthesize a multiple of the
polynomial Z(A+B) in GT (the maximum degree in this group being 4).

Since in the above polynomial differences all arguments to the polynomials are independent except
for z(a + b), it is easy to see that the adversary will not be able to cause any of them to cancel
identically and non-trivially without knowledge of a multiple of Z(A + B). The adversary is thus
reduced to find a numeric cancellation for random assignments of the variables.

We now determine the probability of a random occurrence of a non-trivial numeric cancellation.
Since F1,i − F1,j for fixed i and j is a polynomial of degree at most 2, it vanishes for random
assignment of the indeterminates in Zp with probability at most 2/p. Similarly, for fixed i and j,
the second case occurs with probability 0 (or ≤ 2/p when G1 = G2), and the third with probability
≤ 2/p (or ≤ 4/p when G1 = G2). The same probabilities are found in the analogous cases where
z(a+ b) and c have been exchanged.

Now, absent any of the above events, the distribution of the bit d in A’s view is independent,
and A’s probability of making a correct guess is exactly 1

2 . Thus, by summing over all valid pairs
i, j in each case, we find that A makes a correct guess with advantage ε ≤ 2 ·(

(
τ1
2

)
2
p +

(
τ2
2

)
2
p +

(
τT
2

)
4
p).

Since τ1 + τ2 + τT ≤ q + 9, we have ε ≤ 8(q + 9)2/p, as required.

8.1 Shorter Group Signatures from DDH on G1

When G1 and G2 are distinct groups, the proof above implies that, in the generic model, the
standard Decision Diffie-Hellman (DDH) problem is hard in the group G1 (even though DDH in G2

is easy). For DDH to be hard in a specific group G1, the map ψ : G2 → G1 must be computationally
one-way. This requirement may hold when the bilinear groups are instantiated using the Weil or
Tate pairing over MNT curves [24] [9, Sect. 4.3] where G1 and G2 are distinct (G1 is defined over
the ground field of the curve where as G2 is defined over a low-degree extension). Supersingular
curves do not have this property since DDH is known to be easy on all cyclic subgroups [17].

If one is willing to assume that for MNT curves the DDH assumption holds in G1 then we can
construct even shorter group signatures. If DDH holds in G1 then ElGamal encryption is secure
in G1 and can be used as the encryption in an SDH group signature: T1 = uα, T2 = A · vα.
(The preimages ψ−1(u), ψ−1(v) ∈ G2 of u, v ∈ G1 must not be revealed.) The group signature
then comprises only two elements of G1 and four of Zp. With parameters chosen as in Section 5,
we obtain a 1022-bit group signature whose security is comparable to that of standard 1024-bit
RSA signatures. This is about 30% shorter than the signatures in Section 5. We emphasize that
currently nothing is known about the complexity of the DDH problem in the ground field of an
MNT curve and relying on this assumption seems risky. This question deserves further study.
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9 Conclusions

We presented a group signature scheme based on the Strong Diffie-Hellman (SDH) and Linear
assumptions. The signature makes use of a bilinear map e : G1 × G2 → GT . When any of the
curves described in [9] are used, the group G1 has a short representation and consequently we get
a group signature whose length is under 200 bytes — less than twice the length of an ordinary RSA
signature (128 bytes) with comparable security. Signature generation requires no bilinear pairing
computations, and verification requires a single pairing; both also require a few exponentiations
with short exponents.
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