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Abstract

We propose a fully functional identity-based encryption scheme (IBE). The scheme has chosen
ciphertext security in the random oracle model assuming a variant of the computational Diffie-
Hellman problem. Our system is based on bilinear maps between groups. The Weil pairing on
elliptic curves is an example of such a map. We give precise definitions for secure identity based
encryption schemes and give several applications for such systems.

1 Introduction

In 1984 Shamir [41] asked for a public key encryption scheme in which the public key can be an arbitrary
string. In such a scheme there are four algorithms: (1) setup generates global system parameters and
a master-key, (2) extract uses the master-key to generate the private key corresponding to an arbitrary
public key string ID ∈ {0, 1}∗, (3) encrypt encrypts messages using the public key ID, and (4) decrypt

decrypts messages using the corresponding private key.

Shamir’s original motivation for identity-based encryption was to simplify certificate management
in e-mail systems. When Alice sends mail to Bob at bob@company.com she simply encrypts her message
using the public key string “bob@company.com”. There is no need for Alice to obtain Bob’s public key
certificate. When Bob receives the encrypted mail he contacts a third party, which we call the Private
Key Generator (PKG). Bob authenticates himself to the PKG in the same way he would authenticate
himself to a CA and obtains his private key from the PKG. Bob can then read his e-mail. Note that
unlike the existing secure e-mail infrastructure, Alice can send encrypted mail to Bob even if Bob
has not yet setup his public key certificate. Also note that key escrow is inherent in identity-based
e-mail systems: the PKG knows Bob’s private key. We discuss key revocation, as well as several new
applications for IBE schemes in the next section.

Since the problem was posed in 1984 there have been several proposals for IBE schemes [11, 45,
44, 31, 25] (see also [33, p. 561]). However, none of these are fully satisfactory. Some solutions require
that users not collude. Other solutions require the PKG to spend a long time for each private key
generation request. Some solutions require tamper resistant hardware. It is fair to say that until
the results in [5] constructing a usable IBE system was an open problem. Interestingly, the related
notions of identity-based signature and authentication schemes, also introduced by Shamir [41], do
have satisfactory solutions [15, 14].

In this paper we propose a fully functional identity-based encryption scheme. The performance
of our system is comparable to the performance of ElGamal encryption in F

∗
p. The security of our

system is based on a natural analogue of the computational Diffie-Hellman assumption. Based on
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this assumption we show that the new system has chosen ciphertext security in the random oracle
model. Using standard techniques from threshold cryptography [20, 22] the PKG in our scheme can
be distributed so that the master-key is never available in a single location. Unlike common threshold
systems, we show that robustness for our distributed PKG is free.

Our IBE system can be built from any bilinear map e : G1×G1 → G2 between two groups G1, G2 as
long as a variant of the Computational Diffie-Hellman problem in G1 is hard. We use the Weil pairing
on elliptic curves as an example of such a map. Until recently the Weil pairing has mostly been used for
attacking elliptic curve systems [32, 17]. Joux [26] recently showed that the Weil pairing can be used
for “good” by using it for a protocol for three party one round Diffie-Hellman key exchange. Sakai et
al. [40] used the pairing for key exchange and Verheul [46] used it to construct an ElGamal encryption
scheme where each public key has two corresponding private keys. In addition to our identity-based
encryption scheme, we show how to construct an ElGamal encryption scheme with “built-in” key
escrow, i.e., where one global escrow key can decrypt ciphertexts encrypted under any public key.

To argue about the security of our IBE system we define chosen ciphertext security for identity-
based encryption. Our model gives the adversary more power than the standard model for chosen
ciphertext security [37, 2]. First, we allow the attacker to attack an arbitrary public key ID of her
choice. Second, while mounting a chosen ciphertext attack on ID we allow the attacker to obtain from
the PKG the private key for any public key of her choice, other than the private key for ID. This models
an attacker who obtains a number of private keys corresponding to some identities of her choice and
then tries to attack some other public key ID of her choice. Even with the help of such queries the
attacker should have negligible advantage in defeating the semantic security of the system.

The rest of the paper is organized as follows. Several applications of identity-based encryption are
discussed in Section 1.1. We then give precise definitions and security models in Section 2. We describe
bilinear maps with certain properties in Section 3. Our identity-based encryption scheme is presented
in Section 4 using general bilinear maps. Then a concrete identity based system from the Weil pairing is
given in Section 5. Some extensions and variations (efficiency improvements, distribution of the master-
key) are considered in Section 6. Our construction for ElGamal encryption with a global escrow key is
described in Section 7. Section 8 gives conclusions and some open problems. The Appendix contains
a more detailed discussion of the Weil pairing.

1.1 Applications for Identity-Based Encryption

The original motivation for identity-based encryption is to help the deployment of a public key infras-
tructure. In this section, we show several other unrelated applications.

1.1.1 Revocation of Public Keys

Public key certificates contain a preset expiration date. In an IBE system key expiration can be done by
having Alice encrypt e-mail sent to Bob using the public key: “bob@company.com ‖ current-year”.
In doing so Bob can use his private key during the current year only. Once a year Bob needs to obtain
a new private key from the PKG. Hence, we get the effect of annual private key expiration. Note
that unlike the existing PKI, Alice does not need to obtain a new certificate from Bob every time Bob
refreshes his private key.

One could potentially make this approach more granular by encrypting e-mail for Bob using
“bob@company.com ‖ current-date”. This forces Bob to obtain a new private key every day.
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This might be possible in a corporate PKI where the PKG is maintained by the corporation. With this
approach key revocation is very simple: when Bob leaves the company and his key needs to be revoked,
the corporate PKG is instructed to stop issuing private keys for Bob’s e-mail address. As a result, Bob
can no longer read his email. The interesting property is that Alice does not need to communicate with
any third party certificate directory to obtain Bob’s daily public key. Hence, identity based encryption
is a very efficient mechanism for implementing ephemeral public keys. Also note that this approach
enables Alice to send messages into the future: Bob will only be able to decrypt the e-mail on the date
specified by Alice (see [38, 12] for methods of sending messages into the future using a stronger security
model).

Managing user credentials. A simple extension to the discussion above enables us to manage
user credentials using the IBE system. Suppose Alice encrypts mail to Bob using the public key:
“bob@company.com ‖ current-year ‖ clearance=secret”. Then Bob will only be able to read
the email if on the specified date he has secret clearance. Consequently, it is easy to grant and revoke
user credentials using the PKG.

1.1.2 Delegation of Decryption Keys

Another application for IBE systems is delegation of decryption capabilities. We give two example
applications. In both applications the user Bob plays the role of the PKG. Bob runs the setup algorithm
to generate his own IBE system parameters params and his own master-key. Here we view params as
Bob’s public key. Bob obtains a certificate from a CA for his public key params. When Alice wishes to
send mail to Bob she first obtains Bob’s public key params from Bob’s public key certificate. Note that
Bob is the only one who knows his master-key and hence there is no key-escrow with this setup.

1. Delegation to a laptop. Suppose Alice encrypts mail to Bob using the current date as the IBE
encryption key (she uses Bob’s params as the IBE system parameters). Since Bob has the master-

key he can extract the private key corresponding to this IBE encryption key and then decrypt the
message. Now, suppose Bob goes on a trip for seven days. Normally, Bob would put his private key
on his laptop. If the laptop is stolen the private key is compromised. When using the IBE system
Bob could simply install on his laptop the seven private keys corresponding to the seven days of the
trip. If the laptop is stolen, only the private keys for those seven days are compromised. The master-

key is unharmed. This is analogous to the delegation scenario for signature schemes considered by
Goldreich et al. [23].

2. Delegation of duties. Suppose Alice encrypts mail to Bob using the subject line as the IBE
encryption key. Bob can decrypt mail using his master-key. Now, suppose Bob has several assistants
each responsible for a different task (e.g. one is ‘purchasing’, another is ‘human-resources’, etc.). Bob
gives one private key to each of his assistants corresponding to the assistant’s responsibility. Each
assistant can then decrypt messages whose subject line falls within its responsibilities, but it cannot
decrypt messages intended for other assistants. Note that Alice only obtains a single public key from
Bob (params), and she uses that public key to send mail with any subject line of her choice. The
mail can only be read by the assistant responsible for that subject.

More generally, IBE can simplify security systems that manage a large number of public keys. Rather
than storing a big database of public keys the system can either derive these public keys from usernames,
or simply use the integers 1, . . . , n as distinct public keys.
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2 Definitions

Identity-Based Encryption. An identity-based encryption scheme E is specified by four random-
ized algorithms: Setup, Extract, Encrypt, Decrypt:

Setup: takes a security parameter k and returns params (system parameters) and master-key. The
system parameters include a description of a finite message space M, and a description of a finite
ciphertext space C. Intuitively, the system parameters will be publicly known, while the master-key

will be known only to the “Private Key Generator” (PKG).

Extract: takes as input params, master-key, and an arbitrary ID ∈ {0, 1}∗, and returns a private key
d. Here ID is an arbitrary string that will be used as a public key, and d is the corresponding private
decryption key. The Extract algorithm extracts a private key from the given public key.

Encrypt: takes as input params, ID, and M ∈M. It returns a ciphertext C ∈ C.

Decrypt: takes as input params, C ∈ C, and a private key d. It return M ∈M.

These algorithms must satisfy the standard consistency constraint, namely when d is the private key
generated by algorithm Extract when it is given ID as the public key, then

∀M ∈M : Decrypt(params, C, d) = M where C = Encrypt(params, ID, M)

Chosen ciphertext security. Chosen ciphertext security (IND-CCA) is the standard acceptable
notion of security for a public key encryption scheme [37, 2, 13]. Hence, it is natural to require that an
identity-based encryption scheme also satisfy this strong notion of security. However, the definition of
chosen ciphertext security must be strengthened a bit. The reason is that when an adversary attacks
a public key ID in an identity-based system, the adversary might already possess the private keys of
users ID1, . . . , IDn of her choice. The system should remain secure under such an attack. Hence, the
definition of chosen ciphertext security must allow the adversary to obtain the private key associated
with any identity IDi of her choice (other than the public key ID being attacked). We refer to such
queries as private key extraction queries. Another difference is that the adversary is challenged on a
public key ID of her choice (as opposed to a random public key).

We say that an identity-based encryption scheme E is semantically secure against an adaptive
chosen ciphertext attack (IND-ID-CCA) if no polynomially bounded adversary A has a non-negligible
advantage against the Challenger in the following IND-ID-CCA game:

Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives
the adversary the resulting system parameters params. It keeps the master-key to itself.

Phase 1: The adversary issues queries q1, . . . , qm where query qi is one of:

– Extraction query 〈IDi〉. The challenger responds by running algorithm Extract to gen-
erate the private key di corresponding to the public key 〈IDi〉. It sends di to the
adversary.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm Extract to
generate the private key di corresponding to IDi. It then runs algorithm Decrypt to
decrypt the ciphertext Ci using the private key di. It sends the resulting plaintext to
the adversary.

These queries may be asked adaptively, that is, each query qi may depend on the replies
to q1, . . . , qi−1.
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Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length
plaintexts M0, M1 ∈M and an identity ID on which it wishes to be challenged. The only
constraint is that ID did not appear in any private key extraction query in Phase 1.

The challenger picks a random bit b ∈ {0, 1} and sets C = Encrypt(params, ID, Mb). It
sends C as the challenge to the adversary.

Phase 2: The adversary issues more queries qm+1, . . . , qn where query qi is one of:

– Extraction query 〈IDi〉 where IDi 6= ID. Challenger responds as in Phase 1.

– Decryption query 〈IDi, Ci〉 6= 〈ID, C〉. Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define adversary A’s
advantage in attacking the scheme E as the following function of the security parameter k
(k is given as input to the challenger): AdvE,A(k) =

∣

∣Pr[b = b′]− 1
2

∣

∣.
The probability is over the random bits used by the challenger and the adversary.

Using the IND-ID-CCA game we can define chosen ciphertext security for IBE schemes. As usual, we
say that a function g : R→ R is negligible if for any d > 0 we have |g(k)| < 1/kd for sufficiently large k.

Definition 2.1. We say that the IBE system E is semantically secure against an adaptive chosen ci-
phertext attack if for any polynomial time IND-ID-CCA adversary A the function AdvE,A(k) is negligible.
As shorthand, we say that E is IND-ID-CCA secure.

Note that the standard definition of chosen ciphertext security (IND-CCA) [37, 2] is the same as
above except that there are no private key extraction queries and the adversary is challenged on a
random public key (rather than a public key of her choice). Private key extraction queries are related
to the definition of chosen ciphertext security in the multiuser settings [7]. After all, our definition
involves multiple public keys belonging to multiple users. In [7] the authors show that that multiuser
IND-CCA is reducible to single user IND-CCA using a standard hybrid argument. This does not hold
in the identity-based settings, IND-ID-CCA, since the adversary gets to choose which public keys to
corrupt during the attack. To emphasize the importance of private key extraction queries we note that
our IBE system can be easily modified (by removing one of the hash functions) into a system which
has chosen ciphertext security when private extraction queries are disallowed. However, the scheme is
completely insecure when extraction queries are allowed.

Semantically secure identity based encryption. The proof of security for our IBE system makes
use of a weaker notion of security known as semantic security (also known as semantic security against
a chosen plaintext attack) [24, 2]. Semantic security is similar to chosen ciphertext security (IND-ID-

CCA) except that the adversary is more limited; it cannot issue decryption queries while attacking the
challenge public key. For a standard public key system (not an identity based system) semantic security
is defined using the following game: (1) the adversary is given a random public key generated by the
challenger, (2) the adversary outputs two equal length messages M0 and M1 and receives the encryption
of Mb from the challenger where b is chosen at random in {0, 1}, (3) the adversary outputs b′ and wins
the game if b = b′. The public key system is said to be semantically secure if no polynomial time
adversary can win the game with a non-negligible advantage. As shorthand we say that a semantically
secure public key system is IND-CPA secure. Semantic security captures our intuition that given a
ciphertext the adversary learns nothing about the corresponding plaintext.
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To define semantic security for identity based systems (denoted IND-ID-CPA) we strengthen the
standard definition by allowing the adversary to issue chosen private key extraction queries. Similarly,
the adversary is challenged on a public key ID of her choice. We define semantic security for identity
based encryption schemes using an IND-ID-CPA game. The game is identical to the IND-ID-CCA game
defined above except that the adversary cannot make any decryption queries. The adversary can only
make private key extraction queries. We say that an identity-based encryption scheme E is semantically
secure (IND-ID-CPA) if no polynomially bounded adversary A has a non-negligible advantage against
the Challenger in the following IND-ID-CPA game:

Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives
the adversary the resulting system parameters params. It keeps the master-key to itself.

Phase 1: The adversary issues private key extraction queries ID1, . . . , IDm. The challenger
responds by running algorithm Extract to generate the private key di corresponding to
the public key IDi. It sends di to the adversary. These queries may be asked adaptively.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length
plaintexts M0, M1 ∈ M and a public key ID on which it wishes to be challenged. The
only constraint is that ID did not appear in any private key extraction query in Phase 1.
The challenger picks a random bit b ∈ {0, 1} and sets C = Encrypt(params, ID, Mb). It
sends C as the challenge to the adversary.

Phase 2: The adversary issues more extraction queries IDm+1, . . . , IDn. The only constraint
is that IDi 6= ID. The challenger responds as in Phase 1.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

We refer to such an adversary A as an IND-ID-CPA adversary. As we did above, the
advantage of an IND-ID-CPA adversary A against the scheme E is the following function of
the security parameter k: AdvE,A(k) =

∣

∣Pr[b = b′]− 1
2

∣

∣.
The probability is over the random bits used by the challenger and the adversary.

Definition 2.2. We say that the IBE system E is semantically secure if for any polynomial time IND-

ID-CPA adversary A the function AdvE,A(k) is negligible. As shorthand, we say that E is IND-ID-CPA

secure.

One way identity-based encryption. One can define an even weaker notion of security called one-
way encryption (OWE) [16]. Roughly speaking, a public key encryption scheme is a one-way encryption
if given the encryption of a random plaintext the adversary cannot produce the plaintext in its entirety.
One way encryption is a weak notion of security since there is nothing preventing the adversary from,
say, learning half the bits of the plaintext. Hence, one-way encryption schemes do not generally provide
secure encryption. In the random oracle model one-way encryption schemes can be used for encrypting
session-keys (the session-key is taken to be the hash of the plaintext). We note that one can extend
the notion of one-way encryption to identity based systems by adding private key extraction queries to
the definition. We do not give the full definition here since in this paper we use semantic security as
the weakest notion of security. See [5] for the full definition of identity based one-way encryption, and
its use as part of an alternative proof strategy for our main result.

Random oracle model. To analyze the security of certain natural cryptographic constructions Bel-
lare and Rogaway introduced an idealized security model called the random oracle model [3]. Roughly
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speaking, a random oracle is a function H : X → Y chosen uniformly at random from the set of all
functions {h : X → Y } (we assume Y is a finite set). An algorithm can query the random oracle at
any point x ∈ X and receive the value H(x) in response. Random oracles are used to model crypto-
graphic hash functions such as SHA-1. Note that security in the random oracle model does not imply
security in the real world. Nevertheless, the random oracle model is a useful tool for validating natural
cryptographic constructions. Security proofs in this model prove security against attackers that are
confined to the random oracle world.

Notation. From here on we use Zq to denote the group {0, . . . , q− 1} under addition modulo q. For
a group G of prime order we use G

∗ to denote the set G
∗ = G \ {O} where O is the identity element

in the group G. We use Z
+ to denote the set of positive integers.

3 Bilinear maps and the Bilinear Diffie-Hellman Assumption

Let G1 and G2 be two groups of order q for some large prime q. Our IBE system makes use of a bilinear
map ê : G1 ×G1 → G2 between these two groups. The map must satisfy the following properties:

1. Bilinear: We say that a map ê : G1 ×G1 → G2 is bilinear if ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1

and all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in G1 × G1 to the identity in G2. Observe that
since G1, G2 are groups of prime order this implies that if P is a generator of G1 then ê(P, P ) is a
generator of G2.

3. Computable: There is an efficient algorithm to compute ê(P, Q) for any P, Q ∈ G1.

A bilinear map satisfying the three properties above is said to be an admissible bilinear map. In
Section 5 we give a concrete example of groups G1, G2 and an admissible bilinear map between them.
The group G1 is a subgroup of the additive group of points of an elliptic curve E/Fp. The group G2 is a
subgroup of the multiplicative group of a finite field F

∗
p2 . Therefore, throughout the paper we view G1

as an additive group and G2 as a multiplicative group. As we will see in Section 5.1, the Weil pairing
can be used to construct an admissible bilinear map between these two groups.

The existence of the bilinear map ê : G1 ×G1 → G2 as above has two direct implications to these
groups.

The MOV reduction: Menezes, Okamoto, and Vanstone [32] show that the discrete log problem in
G1 is no harder than the discrete log problem in G2. To see this, let P, Q ∈ G1 be an instance
of the discrete log problem in G1 where both P, Q have order q. We wish to find an α ∈ Zq such
that Q = αP . Let g = ê(P, P ) and h = ê(Q, P ). Then, by bilinearity of ê we know that h = gα.
By non-degeneracy of ê both g, h have order q in G2. Hence, we reduced the discrete log problem
in G1 to a discrete log problem in G2. It follows that for discrete log to be hard in G1 we must
choose our security parameter so that discrete log is hard in G2 (see Section 5).

Decision Diffie-Hellman is Easy: The Decision Diffie-Hellman problem (DDH) [4] in G1 is to dis-
tinguish between the distributions 〈P, aP, bP, abP 〉 and 〈P, aP, bP, cP 〉 where a, b, c are random
in Z

∗
q and P is random in G

∗
1. Joux and Nguyen [28] point out that DDH in G1 is easy. To see

this, observe that given P, aP, bP, cP ∈ G
∗
1 we have

c = ab mod q ⇐⇒ ê(P, cP ) = ê(aP, bP ).
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The Computational Diffie-Hellman problem (CDH) in G1 can still be hard (CDH in G1 is to find
abP given random 〈P, aP, bP 〉). Joux and Nguyen [28] give examples of mappings ê : G1×G1 →
G2 where CDH in G1 is believed to be hard even though DDH in G1 is easy.

3.1 The Bilinear Diffie-Hellman Assumption (BDH)

Since the Decision Diffie-Hellman problem (DDH) in G1 is easy we cannot use DDH to build cryp-
tosystems in the group G1. Instead, the security of our IBE system is based on a variant of the
Computational Diffie-Hellman assumption called the Bilinear Diffie-Hellman Assumption (BDH).

Bilinear Diffie-Hellman Problem. Let G1, G2 be two groups of prime order q. Let ê : G1×G1 →
G2 be an admissible bilinear map and let P be a generator of G1. The BDH problem in 〈G1, G2, ê〉 is
as follows: Given 〈P, aP, bP, cP 〉 for some a, b, c ∈ Z

∗
q compute W = ê(P, P )abc ∈ G2. An algorithm A

has advantage ε in solving BDH in 〈G1, G2, ê〉 if

Pr
[

A(P, aP, bP, cP ) = ê(P, P )abc
]

≥ ε

where the probability is over the random choice of a, b, c in Z
∗
q , the random choice of P ∈ G

∗
1, and the

random bits of A.

BDH Parameter Generator. We say that a randomized algorithm G is a BDH parameter generator
if (1) G takes a security parameter k ∈ Z

+, (2) G runs in polynomial time in k, and (3) G outputs a
prime number q, the description of two groups G1, G2 of order q, and the description of an admissible
bilinear map ê : G1 × G1 → G2. We denote the output of G by G(1k) = 〈q, G1, G2, ê〉. The security
parameter k is used to determine the size of q; for example, one could take q to be a random k-bit
prime. For i = 1, 2 we assume that the description of the group Gi contains polynomial time (in k)
algorithms for computing the group action in Gi and contains a generator of Gi. The generator of Gi

enables us to generate uniformly random elements in Gi. Similarly, we assume that the description of
ê contains a polynomial time algorithm for computing ê. We give an example of a BDH parameter
generator in Section 5.1.

BDH Assumption. Let G be a BDH parameter generator. We say that an algorithm A has advan-
tage ε(k) in solving the BDH problem for G if for sufficiently large k:

AdvG,A(k) = Pr

[

A(q, G1, G2, ê, P, aP, bP, cP ) = ê(P, P )abc

∣

∣

∣

∣

〈q, G1, G2, ê〉 ← G(1
k),

P ← G
∗
1, a, b, c← Z

∗
q

]

≥ ε(k)

We say that G satisfies the BDH assumption if for any randomized polynomial time (in k) algorithm
A we have that AdvG,A(k) is a negligible function. When G satisfies the BDH assumption we say that
BDH is hard in groups generated by G.

In Section 5.1 we give some examples of BDH parameter generators that are believed to satisfy
the BDH assumption. We note that Joux [26] (implicitly) used the BDH assumption to construct a
one-round three party Diffie-Hellman protocol. The BDH assumption is also needed for constructions
in [46, 40].
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Hardness of BDH. It is interesting to study the relationship of the BDH problem to other hard
problems used in cryptography. Currently, all we can say is that the BDH problem in 〈G1, G2, ê〉 is
no harder than the CDH problem in G1 or G2. In other words, an algorithm for CDH in G1 or G2 is
sufficient for solving BDH in 〈G1, G2, ê〉. The converse is currently an open problem: is an algorithm
for BDH sufficient for solving CDH in G1 or in G2? We refer to a survey by Joux [27] for a more
detailed analysis of the relationship between BDH and other standard problems.

We note that in all our examples (in Section 5.1) the isomorphisms from G1 to G2 induced by the
bilinear map are believed to be one-way functions. More specifically, for a point Q ∈ G

∗
1 define the

isomorphism fQ : G1 → G2 by fQ(P ) = ê(P, Q). If any one of these isomorphisms turns out to be
invertible then BDH is easy in 〈G1, G2, ê〉. Fortunately, an efficient algorithm for inverting fQ for some
fixed Q would imply an efficient algorithm for deciding DDH in the group G2. In all our examples
DDH is believed to be hard in the group G2. Hence, all the isomorphisms fQ : G1 → G2 induced by
the bilinear map are believed to be one-way functions.

4 Our Identity-Based Encryption Scheme

We describe our scheme in stages. First we give a basic identity-based encryption scheme which is not
secure against an adaptive chosen ciphertext attack. The only reason for describing the basic scheme
is to make the presentation easier to follow. Our full scheme, described in Section 4.2, extends the
basic scheme to get security against an adaptive chosen ciphertext attack (IND-ID-CCA) in the random
oracle model. In Section 4.3 we relax some of the requirements on the hash functions.

The presentation in this section uses an arbitrary BDH parameter generator G satisfying the BDH
assumption. In Section 5 we describe a concrete IBE system using the Weil pairing.

4.1 BasicIdent

To explain the basic ideas underlying our IBE system we describe the following simple scheme, called
BasicIdent. We present the scheme by describing the four algorithms: Setup, Extract, Encrypt, Decrypt.
We let k be the security parameter given to the setup algorithm. We let G be some BDH parameter
generator.

Setup: Given a security parameter k ∈ Z
+, the algorithm works as follows:

Step 1: Run G on input k to generate a prime q, two groups G1, G2 of order q, and an admissible
bilinear map ê : G1 ×G1 → G2. Choose a random generator P ∈ G1.

Step 2: Pick a random s ∈ Z
∗
q and set Ppub = sP .

Step 3: Choose a cryptographic hash function H1 : {0, 1}∗ → G
∗
1. Choose a cryptographic hash

function H2 : G2 → {0, 1}
n for some n. The security analysis will view H1, H2 as random oracles.

The message space isM = {0, 1}n. The ciphertext space is C = G
∗
1×{0, 1}

n. The system parameters
are params = 〈q, G1, G2, ê, n, P, Ppub, H1, H2〉. The master-key is s ∈ Z

∗
q .

Extract: For a given string ID ∈ {0, 1}∗ the algorithm does: (1) computes QID = H1(ID) ∈ G
∗
1, and

(2) sets the private key dID to be dID = sQID where s is the master key.

Encrypt: To encrypt M ∈M under the public key ID do the following: (1) compute QID = H1(ID) ∈
G

∗
1, (2) choose a random r ∈ Z

∗
q , and (3) set the ciphertext to be

C = 〈rP, M ⊕H2(g
r
ID
)〉 where gID = ê(QID, Ppub) ∈ G

∗
2

9



Decrypt: Let C = 〈U, V 〉 ∈ C be a ciphertext encrypted using the public key ID. To decrypt C using
the private key dID ∈ G

∗
1 compute:

V ⊕H2(ê(dID, U)) = M

This completes the description of BasicIdent. We first verify consistency. When everything is computed
as above we have:
1. During encryption M is bitwise exclusive-ored with the hash of: gr

ID
.

2. During decryption V is bitwise exclusive-ored with the hash of: ê(dID, U).
These masks used during encryption and decryption are the same since:

ê(dID, U) = ê(sQID, rP ) = ê(QID, P )sr = ê(QID, Ppub)
r = gr

ID

Thus, applying decryption after encryption produces the original message M as required. Performance
considerations of BasicIdent are discussed in Section 5. Note that the value of gID in Algorithm Encrypt

is independent of the message to be encrypted. Hence there is no need to recompute gID on subsequent
encryptions to the same public key ID.

Security. Next, we study the security of this basic scheme. The following theorem shows that
BasicIdent is a semantically secure identity based encryption scheme (IND-ID-CPA) assuming BDH is
hard in groups generated by G.

Theorem 4.1. Suppose the hash functions H1, H2 are random oracles. Then BasicIdent is a semanti-
cally secure identity based encryption scheme (IND-ID-CPA) assuming BDH is hard in groups generated
by G. Concretely, suppose there is an IND-ID-CPA adversary A that has advantage ε(k) against the
scheme BasicIdent. Suppose A makes at most qE > 0 private key extraction queries and qH2

> 0 hash
queries to H2. Then there is an algorithm B that solves BDH in groups generated by G with advantage
at least:

AdvG,B(k) ≥
2ε(k)

e(1 + qE) · qH2

Here e ≈ 2.71 is the base of the natural logarithm. The running time of B is O(time(A)).

To prove the theorem we first define a related Public Key Encryption scheme (not an identity based
scheme), called BasicPub. BasicPub is described by three algorithms: keygen, encrypt, decrypt.

keygen: Given a security parameter k ∈ Z
+, the algorithm works as follows:

Step 1: Run G on input k to generate two prime order groups G1, G2 and a bilinear map ê : G1×G1 →
G2. Let q be the order of G1, G2. Choose a random generator P ∈ G1.

Step 2: Pick a random s ∈ Z
∗
q and set Ppub = sP . Pick a random QID ∈ G

∗
1.

Step 3: Choose a cryptographic hash function H2 : G2 → {0, 1}
n for some n.

Step 4: The public key is 〈q, G1, G2, ê, n, P, Ppub, QID, H2〉. The private key is dID = sQID ∈ G
∗
1.

encrypt: To encrypt M ∈ {0, 1}n choose a random r ∈ Z
∗
q and set the ciphertext to be:

C = 〈rP, M ⊕H2(g
r)〉 where g = ê(QID, Ppub) ∈ G

∗
2

decrypt: Let C = 〈U, V 〉 be a ciphertext created using the public key 〈q, G1, G2, ê, n, P, Ppub, QID, H2〉.
To decrypt C using the private key dID ∈ G

∗
1 compute:

V ⊕H2(ê(dID, U)) = M

10



This completes the description of BasicPub. We now prove Theorem 4.1 in two steps. We first show
that an IND-ID-CPA attack on BasicIdent can be converted to a IND-CPA attack on BasicPub. This
step shows that private key extraction queries do not help the adversary. We then show that BasicPub

is IND-CPA secure if the BDH assumption holds.

Lemma 4.2. Let H1 be a random oracle from {0, 1}∗ to G
∗
1. Let A be an IND-ID-CPA adversary that

has advantage ε(k) against BasicIdent. Suppose A makes at most qE > 0 private key extraction queries.
Then there is a IND-CPA adversary B that has advantage at least ε(k)/e(1 + qE) against BasicPub. Its
running time is O(time(A)).

Proof. We show how to construct an IND-CPA adversary B that uses A to gain advantage ε/e(1+qE)
against BasicPub. The game between the challenger and the adversary B starts with the challenger
first generating a random public key by running algorithm keygen of BasicPub. The result is a public
key Kpub = 〈q, G1, G2, ê, n, P, Ppub, QID, H2〉 and a private key dID = sQID. As usual, q is the order of
G1, G2. The challenger gives Kpub to algorithm B. Algorithm B is supposed to output two messages
M0 and M1 and expects to receive back the BasicPub encryption of Mb under Kpub where b ∈ {0, 1}.
Then algorithm B outputs its guess b′ ∈ {0, 1} for b.

Algorithm B works by interacting with A in an IND-ID-CPA game as follows (B simulates the challenger
for A):

Setup: Algorithm B gives A the BasicIdent system parameters 〈q, G1, G2, ê, n, P, Ppub, H1, H2〉. Here
q, G1,G2, ê, n, P , Ppub, H2 are taken from Kpub, and H1 is a random oracle controlled by B as
described below.

H1-queries: At any time algorithm A can query the random oracle H1. To respond to these queries
algorithm B maintains a list of tuples 〈IDj , Qj , bj , cj〉 as explained below. We refer to this list as the
H list

1 . The list is initially empty. When A queries the oracle H1 at a point IDi algorithm B responds
as follows:

1. If the query IDi already appears on the H list
1 in a tuple 〈IDi, Qi, bi, ci〉 then Algorithm B responds

with H1(IDi) = Qi ∈ G
∗
1.

2. Otherwise, B generates a random coin ∈ {0, 1} so that Pr[coin = 0] = δ for some δ that will be
determined later.

3. Algorithm B picks a random b ∈ Z
∗
q .

If coin = 0 compute Qi = bP ∈ G
∗
1. If coin = 1 compute Qi = bQID ∈ G

∗
1.

4. Algorithm B adds the tuple 〈IDi, Qi, b, coin〉 to the H list
1 and responds to A with H1(IDi) = Qi.

Note that either way Qi is uniform in G
∗
1 and is independent of A’s current view as required.

Phase 1: Let IDi be a private key extraction query issued by algorithm A. Algorithm B responds to
this query as follows:

1. Run the above algorithm for responding to H1-queries to obtain a Qi ∈ G
∗
1 such that H1(IDi) = Qi.

Let 〈IDi, Qi, bi, coini〉 be the corresponding tuple on the H list
1 . If coini = 1 then B reports failure

and terminates. The attack on BasicPub failed.

2. We know coini = 0 and hence Qi = biP . Define di = biPpub ∈ G
∗
1. Observe that di = sQi and

therefore di is the private key associated to the public key IDi. Give di to algorithm A.

Challenge: Once algorithm A decides that Phase 1 is over it outputs a public key IDch and two
messages M0, M1 on which it wishes to be challenged. Algorithm B responds as follows:

1. Algorithm B gives its challenger the messages M0, M1. The challenger responds with a BasicPub

ciphertext C = 〈U, V 〉 such that C is the encryption of Mc for a random c ∈ {0, 1}.

2. Next, B runs the algorithm for responding to H1-queries to obtain a Q ∈ G
∗
1 such that H1(IDch) =

11



Q. Let 〈IDch, Q, b, coin〉 be the corresponding tuple on the H list
1 . If coin = 0 then B reports failure

and terminates. The attack on BasicPub failed.

3. We know coin = 1 and therefore Q = bQID. Recall that when C = 〈U, V 〉 we have U ∈ G
∗
1.

Set C ′ = 〈b−1U, V 〉, where b−1 is the inverse of b mod q. Algorithm B responds to A with the
challenge ciphertext C ′. Note that C ′ is a proper BasicIdent encryption of Mc under the public key
IDch as required. To see this first observe that, since H1(IDch) = Q, the private key corresponding
to IDch is dch = sQ. Second, observe that

ê(b−1U, dch) = ê(b−1U, sQ) = ê(U, sb−1Q) = ê(U, sQID) = ê(U, dID).

Hence, the BasicIdent decryption of C ′ using dch is the same as the BasicPub decryption of C using
dID.

Phase 2: Algorithm B responds to private key extraction queries as in Phase 1.

Guess: Eventually algorithm A outputs a guess c′ for c. Algorithm B outputs c′ as its guess for c.

Claim: If algorithm B does not abort during the simulation then algorithm A’s view is identical to
its view in the real attack. Furthermore, if B does not abort then |Pr[c = c′]− 1

2 | ≥ ε. The probability
is over the random bits used by A,B and the challenger.

Proof of claim. The responses to H1-queries are as in the real attack since each response is uniformly
and independently distributed in G

∗
1. All responses to private key extraction queries are valid. Finally,

the challenge ciphertext C ′ given to A is the BasicIdent encryption of Mc for some random c ∈ {0, 1}.
Therefore, by definition of algorithm A we have that |Pr[c = c′]− 1

2 | ≥ ε. �

To complete the proof of Lemma 4.2 it remains to calculate the probability that algorithm B aborts
during the simulation. Suppose A makes a total of qE private key extraction queries. Then the prob-
ability that B does not abort in phases 1 or 2 is δqE . The probability that it does not abort during
the challenge step is 1 − δ. Therefore, the probability that B does not abort during the simulation
is δqE (1 − δ). This value is maximized at δopt = 1 − 1/(qE + 1). Using δopt, the probability that B
does not abort is at least 1/e(1+qE). This shows that B’s advantage is at least ε/e(1+qE) as required. �

The analysis used in the proof of Lemma 4.2 uses a similar technique to Coron’s analysis of the
Full Domain Hash signature scheme [9]. Next, we show that BasicPub is a semantically secure public
key system if the BDH assumption holds.

Lemma 4.3. Let H2 be a random oracle from G2 to {0, 1}n. Let A be an IND-CPA adversary that has
advantage ε(k) against BasicPub. Suppose A makes a total of qH2

> 0 queries to H2. Then there is an
algorithm B that solves the BDH problem for G with advantage at least 2ε(k)/qH2

and a running time
O(time(A)).

Proof. Algorithm B is given as input the BDH parameters 〈q, G1, G2, ê〉 produced by G and a
random instance 〈P, aP, bP, cP 〉 = 〈P, P1, P2, P3〉 of the BDH problem for these parameters, i.e. P is
random in G

∗
1 and a, b, c are random in Z

∗
q where q is the order of G1, G2. Let D = ê(P, P )abc ∈ G2 be

the solution to this BDH problem. Algorithm B finds D by interacting with A as follows:

Setup: Algorithm B creates the BasicPub public key Kpub = 〈q, G1, G2, ê, n, P, Ppub, QID, H2〉 by setting
Ppub = P1 and QID = P2. Here H2 is a random oracle controlled by B as described below. Algorithm
B gives A the BasicPub public key Kpub. Observe that the (unknown) private key associated to Kpub

is dID = aQID = abP .
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H2-queries: At any time algorithm A may issue queries to the random oracle H2. To respond to
these queries B maintains a list of tuples called the H list

2 . Each entry in the list is a tuple of the form
〈Xj , Hj〉. Initially the list is empty. To respond to query Xi algorithm B does the following:

1. If the query Xi already appears on the H list
2 in a tuple 〈Xi, Hi〉 then respond with H2(Xi) = Hi.

2. Otherwise, B just picks a random string Hi ∈ {0, 1}
n and adds the tuple 〈Xi, Hi〉 to the H list

2 . It
responds to A with H2(Xi) = Hi.

Challenge: Algorithm A outputs two messages M0, M1 on which it wishes to be challenged. Al-
gorithm B picks a random string R ∈ {0, 1}n and defines C to be the ciphertext C = 〈P3, R〉.
Algorithm B gives C as the challenge to A. Observe that, by definition, the decryption of C is
R⊕H2(ê(P3, dID)) = R⊕H2(D).

Guess: Algorithm A outputs its guess c′ ∈ {0, 1}. At this point B picks a random tuple 〈Xj , Hj〉 from
the H list

2 and outputs Xj as the solution to the given instance of BDH.

Algorithm B is simulating a real attack environment for algorithm A (it simulates the challenger and
the oracle for H2). We show that algorithm B outputs the correct answer D with probability at least
2ε/qH2

as required. The proof is based on comparing A’s behavior in the simulation to its behavior in
a real IND-CPA attack game (against a real challenger and a real random oracle for H2).

Let H be the event that algorithm A issues a query for H2(D) at some point during the simulation
above (this implies that at the end of the simulation D appears in some tuple on the H list

2 ). We show
that Pr[H] ≥ 2ε. This will prove that algorithm B outputs D with probability at least 2ε/qH2

. We
also study event H in the real attack game, namely the event that A issues a query for H2(D) when
communicating with a real challenger and a real random oracle for H2.

Claim 1: Pr[H] in the simulation above is equal to Pr[H] in the real attack.

Proof of claim. Let H` be the event that A makes a query for H2(D) in one of its first ` queries to
the H2 oracle. We prove by induction on ` that Pr[H`] in the real attack is equal to Pr[H`] in the
simulation for all ` ≥ 0. Clearly Pr[H0] = 0 in both the simulation and in the real attack. Now suppose
that for some ` > 0 we have that Pr[H`−1] in the simulation is equal to Pr[H`−1] in the real attack.
We show that the same holds for H`. We know that:

Pr[H`] = Pr[H` |H`−1] Pr[H`−1] + Pr[H` | ¬H`−1] Pr[¬H`−1] (1)

= Pr[H`−1] + Pr[H` | ¬H`−1] Pr[¬H`−1]

We argue that Pr[H` | ¬H`−1] in the simulation is equal to Pr[H` | ¬H`−1] in the real attack. To see
this observe that as long as A does not issue a query for H2(D) its view during the simulation is
identical to its view in the real attack (against a real challenger and a real random oracle for H2).
Indeed, the public-key and the challenge are distributed as in the real attack. Similarly, all responses
to H2-queries are uniform and independent in {0, 1}n. Therefore, Pr[H` | ¬H`−1] in the simulation is
equal to Pr[H` | ¬H`−1] in the real attack. It follows by (1) and the inductive hypothesis that Pr[H`]
in the real attack is equal to Pr[H`] in the simulation. By induction on ` we obtain that Pr[H] in the
real attack is equal to Pr[H] in the simulation. �

Claim 2: In the real attack we have Pr[H] ≥ 2ε.

Proof of claim. In the real attack, if A never issues a query for H2(D) then the decryption of C
is independent of A’s view (since H2(D) is independent of A’s view). Therefore, in the real attack
Pr[c = c′ | ¬H] = 1/2. By definition of A, we know that in the real attack |Pr[c = c′] − 1/2| ≥ ε.
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We show that these two facts imply that Pr[H] ≥ 2ε. To do so we first derive simple upper and lower
bounds on Pr[c = c′]:

Pr[c = c′] = Pr[c = c′|¬H] Pr[¬H] + Pr[c = c′|H] Pr[H] ≤

≤ Pr[c = c′|¬H] Pr[¬H] + Pr[H] =
1

2
Pr[¬H] + Pr[H] =

1

2
+

1

2
Pr[H]

Pr[c = c′] ≥ Pr[c = c′|¬H] Pr[¬H] =
1

2
−

1

2
Pr[H]

It follows that ε ≤ |Pr[c = c′]− 1/2| ≤ 1
2 Pr[H]. Therefore, in the real attack Pr[H] ≥ 2ε. �

To complete the proof of Lemma 4.3 observe that by Claims 1 and 2 we know that Pr[H] ≥ 2ε in
the simulation above. Hence, at the end of the simulation, D appears in some tuple on the H list

2 with
probability at least 2ε. It follows that B produces the correct answer with probability at least 2ε/qH2

as required. �

We note that one can slightly vary the reduction in the proof above to obtain different bounds.
For example, in the ‘Guess’ step above one can avoid having to pick a random element from the H list

2

by using the random self reduction of the BDH problem. This requires running algorithm A multiple
times (as in Theorem 7 of [42]). The success probability for solving the given BDH problem increases
at the cost of also increasing the running time.

Proof of Theorem 4.1. The theorem follows directly from Lemma 4.2 and Lemma 4.3. Composing
both reductions shows that an IND-ID-CPA adversary on BasicIdent with advantage ε(k) gives a BDH
algorithm for G with advantage at least 2ε(k)/e(1 + qE)qH2

, as required. �

4.2 Identity-Based Encryption with Chosen Ciphertext Security

We use a technique due to Fujisaki-Okamoto [16] to convert the BasicIdent scheme of the previous
section into a chosen ciphertext secure IBE system (in the sense of Section 2) in the random oracle
model. Let E be a probabilistic public key encryption scheme. We denote by Epk(M ; r) the encryption
of M using the random bits r under the public key pk. Fujisaki-Okamoto define the hybrid scheme Ehy

as:
Ehy

pk (M) =
〈

Epk(σ; H3(σ, M)), H4(σ)⊕M
〉

Here σ is generated at random and H3, H4 are cryptographic hash functions. Fujisaki-Okamoto show
that if E is a one-way encryption scheme then Ehy is a chosen ciphertext secure system (IND-CCA) in the
random oracle model (assuming Epk satisfies some natural constraints). We note that semantic security
implies one-way encryption and hence the Fujisaki-Okamoto result also applies if E is semantically
secure (IND-CPA).

We apply the Fujisaki-Okamoto transformation to BasicIdent and show that the resulting IBE
system is IND-ID-CCA secure. We obtain the following IBE scheme which we call FullIdent. Recall that
n is the length of the message to be encrypted.

Setup: As in the BasicIdent scheme. In addition, we pick a hash function H3 : {0, 1}n×{0, 1}n → Z
∗
q ,

and a hash function H4 : {0, 1}n → {0, 1}n.

Extract: As in the BasicIdent scheme.
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Encrypt: To encrypt M ∈ {0, 1}n under the public key ID do the following: (1) compute QID =
H1(ID) ∈ G

∗
1, (2) choose a random σ ∈ {0, 1}n, (3) set r = H3(σ, M), and (4) set the ciphertext to be

C = 〈rP, σ ⊕H2(g
r
ID
), M ⊕H4(σ)〉 where gID = ê(QID, Ppub) ∈ G2

Decrypt: Let C = 〈U, V, W 〉 be a ciphertext encrypted using the public key ID. If U 6∈ G
∗
1 reject the

ciphertext. To decrypt C using the private key dID ∈ G
∗
1 do:

1. Compute V ⊕H2(ê(dID, U)) = σ.

2. Compute W ⊕H4(σ) = M .

3. Set r = H3(σ, M). Test that U = rP . If not, reject the ciphertext.

4. Output M as the decryption of C.

This completes the description of FullIdent. Note that M is encrypted as W = M ⊕H4(σ). This can be
replaced by W = EH4(σ)(M) where E is a semantically secure symmetric encryption scheme (see [16]).

Security. The following theorem shows that FullIdent is a chosen ciphertext secure IBE (i.e. IND-ID-

CCA), assuming BDH is hard in groups generated by G.

Theorem 4.4. Let the hash functions H1, H2, H3, H4 be random oracles. Then FullIdent is a chosen
ciphertext secure IBE (IND-ID-CCA) assuming BDH is hard in groups generated by G.
Concretely, suppose there is an IND-ID-CCA adversary A that has advantage ε(k) against the scheme
FullIdent and A runs in time at most t(k). Suppose A makes at most qE extraction queries, at most
qD decryption queries, and at most qH2

, qH3
, qH4

queries to the hash functions H2, H3, H4 respectively.
Then there is a BDH algorithm B for G with running time t1(k) where:

AdvG,B(k) ≥ 2FOadv(
ε(k)

e(1+qE+qD) , qH4
, qH3

, qD)/qH2

t1(k) ≤ FOtime(t(k), qH4
, qH3

)

where the functions FOtime and FOadv are defined in Theorem 4.5.

The proof of Theorem 4.4 is based on the following result of Fujisaki and Okamoto (Theorem 14
in [16]). Let BasicPubhy be the result of applying the Fujisaki-Okamoto transformation to BasicPub.

Theorem 4.5 (Fujisaki-Okamoto). Suppose A is an IND-CCA adversary that achieves advantage
ε(k) when attacking BasicPubhy. Suppose A has running time t(k), makes at most qD decryption
queries, and makes at most qH3

, qH4
queries to the hash functions H3, H4 respectively. Then there is an

IND-CPA adversary B against BasicPub with running time t1(k) and advantage ε1(k) where

ε1(k) ≥ FOadv(ε(k), qH4
, qH3

, qD) =
1

2(qH4
+ qH3

)
[(ε(k) + 1)(1− 2/q)qD − 1]

t1(k) ≤ FOtime(t(k), qH4
, qH3

) = t(k) + O((qH4
+ qH3

) · n), and

Here q is the size of the groups G1, G2 and n is the length of σ.

In fact, Fujisaki-Okamoto prove a stronger result: Under the hypothesis of Theorem 4.5, BasicPubhy

would not even be a one-way encryption scheme. For our purposes the result in Theorem 4.5 is sufficient.
To prove Theorem 4.4 we also need the following lemma to translate between an IND-ID-CCA chosen
ciphertext attack on FullIdent and an IND-CCA chosen ciphertext attack on BasicPubhy.

Lemma 4.6. Let A be an IND-ID-CCA adversary that has advantage ε(k) against FullIdent. Suppose A
makes at most qE > 0 private key extraction queries and at most qD decryption queries. Then there is
an IND-CCA adversary B that has advantage at least ε(k)

e(1+qE+qD) against BasicPubhy. Its running time

is O(time(A)).
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Proof. We construct an IND-CCA adversary B that uses A to gain advantage ε/e(1 + qE + qD)
against BasicPubhy. The game between the challenger and the adversary B starts with the challenger
first generating a random public key by running algorithm keygen of BasicPubhy. The result is a public
key Kpub = 〈q, G1, G2, ê, n, P, Ppub, QID, H2, H3, H4〉 and a private key dID = sQID. The challenger gives
Kpub to algorithm B.

Algorithm B mounts an IND-CCA attack on the key Kpub using the help of algorithmA. Algorithm B
interacts with A as follows:

Setup: Same as in Lemma 4.2 (with H3, H4 included in the system parameters given to A).

H1-queries: These queries are handled as in Lemma 4.2.

Phase 1: Private key queries. Handled as in Lemma 4.2.

Phase 1: Decryption queries. Let 〈IDi, Ci〉 be a decryption query issued by algorithm A. Let
Ci = 〈Ui, Vi, Wi〉. Algorithm B responds to this query as follows:

1. Run the above algorithm for responding to H1-queries to obtain a Qi ∈ G
∗
1 such that H1(IDi) = Qi.

Let 〈IDi, Qi, bi, coini〉 be the corresponding tuple on the H list
1 .

2. Suppose coini = 0. In this case run the algorithm for responding to private key queries to obtain
the private key for the public key IDi. Then use the private key to respond to the decryption
query.

3. Suppose coini = 1. Then Qi = biQID.

– Recall that Ui ∈ G1. Set C ′
i = 〈biUi, Vi, Wi〉. Let di = sQi be the (unknown) FullIdent

private key corresponding to IDi. Then the FullIdent decryption of Ci using di is the same as
the BasicPubhy decryption of C ′

i using dID. To see this observe that:

ê(biUi, dID) = ê(biUi, sQID) = ê(Ui, sbiQID) = ê(Ui, sQi) = ê(Ui, di).

– Relay the decryption query 〈C ′
i〉 to the challenger and relay the challenger’s response back to A.

Challenge: Once algorithm A decides that Phase 1 is over it outputs a public key IDch and two
messages M0, M1 on which it wishes to be challenged. Algorithm B responds as follows:

1. Algorithm B gives the challenger M0, M1 as the messages that it wishes to be challenged on. The
challenger responds with a BasicPubhy ciphertext C = 〈U, V, W 〉 such that C is the encryption of
Mc for a random c ∈ {0, 1}.

2. Next, B runs the algorithm for responding to H1-queries to obtain a Q ∈ G
∗
1 such that H1(IDch) =

Q. Let 〈IDch, Q, b, coin〉 be the corresponding tuple on the H list
1 . If coin = 0 then B reports failure

and terminates. The attack on BasicPubhy failed.

3. We know coin = 1 and therefore Q = bQID. Recall that when C = 〈U, V, W 〉 we have U ∈ G
∗
1.

Set C ′ = 〈b−1U, V, W 〉, where b−1 is the inverse of b mod q. Algorithm B responds to A with the
challenge C ′. Note that, as in the proof of Lemma 4.2, C ′ is a FullIdent encryption of Mc under
the public key IDch as required.

Phase 2: Private key queries. Algorithm B responds to private key extraction queries in the same
way it did in Phase 1.

Phase 2: Decryption queries. Algorithm B responds to decryption queries in the same way it
did in Phase 1. However, if the resulting decryption query relayed to the challenger is equal to the
challenge ciphertext C = 〈U, V, W 〉 then B reports failure and terminates. The attack on BasicPubhy

failed.
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Guess: Eventually algorithm A outputs a guess c′ for c. Algorithm B outputs c′ as its guess for c.

Claim: If algorithm B does not abort during the simulation then algorithm A’s view is identical to
its view in the real attack. Furthermore, if B does not abort then |Pr[c = c′]− 1

2 | ≥ ε. The probability
is over the random bits used by A,B and the challenger.

Proof of claim. The responses to H1-queries are as in the real attack since each response is uniformly
and independently distributed in G

∗
1. All responses to private key extraction queries and decryp-

tion queries are valid. Finally, the challenge ciphertext C ′ given to A is the FullIdent encryption of Mc

for some random c ∈ {0, 1}. Therefore, by definition of algorithm A we have that |Pr[c = c′]− 1
2 | ≥ ε. �

It remains to bound the probability that algorithm B aborts during the simulation. The algorithm
could abort for three reasons: (1) a bad private key query from A during phases 1 or 2, (2) A chooses
a bad IDch to be challenged on, or (3) a bad decryption query from A during phase 2. We define three
corresponding events:

E1 is the event that A issues a private key query during phase 1 or 2 that causes algorithm B to abort.

E2 is the event that A choose a public key IDch to be challenged on that causes algorithm B to abort.

E3 is the event that during phase 2 of the simulation Algorithm A issues a decryption query 〈IDi, Ci〉
so that the decryption query that B would relay to the BasicPubhy challenger is equal to C. Recall
that C = 〈U, V, W 〉 is the challenge ciphertext from the BasicPubhy challenger.

Claim: Pr[¬E1 ∧ ¬E2 ∧ ¬E3] ≥ δqE+qD(1− δ)

Proof of claim. We prove the claim by induction on the maximum number of queries qE + qD made
by the adversary. Let i = qE + qD and let E0...i be the event that E1 ∨ E3 happens after A issues at
most i queries. Similarly, let E i be the event that E1 ∨ E3 happens for the first time when A issues
the i’th query. We prove by induction on i that Pr[¬E0...i | ¬E2] ≥ δi. The claim follows because
Pr[¬E1 ∧ ¬E2 ∧ ¬E3] = Pr[¬E1 ∧ ¬E3 | ¬E2] Pr[¬E2] ≥ Pr[¬E1 ∧ ¬E3 | ¬E2](1− δ).

For i = 0 the claim is trivial since by definition Pr[¬E0...0] = 1. Now, suppose the claim holds for
i− 1. Then

Pr[¬E0...i | ¬E2] = Pr[¬E0...i | ¬E0...i−1 ∧ ¬E2] Pr[¬E0...i−1 | ¬E2]

= Pr[¬E i | ¬E0...i−1 ∧ ¬E2] Pr[¬E0...i−1 | ¬E2] ≥ Pr[¬E i | ¬E0...i−1 ∧ ¬E2]δ
i−1

Hence, it suffices to bound qi = Pr[¬E i | ¬E0...i−1 ∧ ¬E2]. In other words, we bound the probability
that the i’th query does not cause E i to happen given that the first i − 1 queries did not, and given
that E2 does not occur. Consider the i’th query issued by A during the simulation. The query is either
a private key query for 〈IDi〉 or a decryption query for 〈IDi, Ci〉 where Ci = 〈Ui, Vi, Wi〉. If the query is
a decryption query we assume it takes place during phase 2 since otherwise it has no effect on E3.

Let H1(IDi) = Qi and let 〈IDi, Qi, bi, coini〉 be the corresponding tuple on the H list
1 . Recall that

when coini = 0 the query cannot cause event E1 to happen. Similarly, when coini = 0 the query cannot
cause event E3 to happen since in this case B does not relay a decryption query to the BasicPubhy

challenger. We use these facts to bound qi. There are four cases to consider. In the first three cases
we assume IDi is not equal to the public key IDch on which A is being challenged.

Case 1. The i’th query is the first time A issues a query containing IDi. In this case Pr[coini = 0] = δ
and hence qi ≥ δ.

Case 2. The public key IDi appeared in a previous private key query. Since by assumption this earlier
private key query did not cause E0...i−1 to happen we know that coini = 0. Hence, we have qi = 1.
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Case 3. The public key IDi appeared in a previous decryption query. Since by assumption this earlier
decryption query did not cause event E0...i−1 to happen we have that either coini = 0 or coini is
independent of A’s current view. Either way we have that qi ≥ δ.

Case 4. The public key IDi is equal to the public key IDch on which A is being challenged. Then, by
definition, the i’th query cannot be a private key query. Therefore, it must be a decryption query
〈IDi, Ci〉. Furthermore, since E2 did not happen we know that coini = 1 and hence B will relay a
decryption query C ′

i to the BasicPubhy challenger. Let C ′ be the challenge ciphertext given to A.
By definition we know that Ci 6= C ′. It follows that C ′

i 6= C. Therefore this query cannot cause
event E3 to happen. Hence, in this case qi = 1.

To summarize, we see that whatever the i’th query is, we have that qi ≥ δ. Therefore, we have that
Pr[¬E0...i | ¬E2] ≥ δi as required. The claim now follows by setting i = qE + qD. �

To conclude the proof of Lemma 4.6 it remains to optimize the choice of δ. Since Pr[¬E1 ∧ ¬E2 ∧ ¬E3] ≥
δqE+qD(1−δ) the success probability is maximized at δopt = 1−1/(qE +qD +1). Using δopt, the probabil-
ity that B does not abort is at least 1

e(1+qE+qD) . This shows that B’s advantage is at least ε/e(1+qE+qD)
as required. �

Proof of Theorem 4.4. By Lemma 4.6 an IND-ID-CCA adversary on FullIdent implies an IND-CCA

adversary on BasicPubhy. By Theorem 4.5 an IND-CCA adversary on BasicPubhy implies an IND-CPA

adversary on BasicPub. By Lemma 4.3 an IND-CPA adversary on BasicPub implies an algorithm for
BDH. Composing all these reductions gives the required bounds. �

4.3 Relaxing the hashing requirements

Recall that the IBE system of Section 4.2 uses a hash function H1 : {0, 1}∗ → G
∗
1. The concrete IBE

system presented in the next section uses G1 as a subgroup of the group of points on an elliptic curve.
In practice, it is difficult to build hash functions that hash directly onto such groups. We therefore
show how to relax the requirement of hashing directly onto G

∗
1. Rather than hash onto G

∗
1 we hash

onto some set A ⊆ {0, 1}∗ and then use a deterministic encoding function to map A onto G
∗
1.

Admissible encodings: Let G1 be a group and let A ∈ {0, 1}∗ be a finite set. We say that an
encoding function L : A→ G

∗
1 is admissible if it satisfies the following properties:

1. Computable: There is an efficient deterministic algorithm to compute L(x) for any x ∈ A.

2. `-to-1: For any y ∈ G
∗
1 the preimage of y under L has size exactly `. In other words, |L−1(y)| = `

for all y ∈ G
∗
1. Note that this implies that |A| = ` · |G∗

1|.

3. Samplable: There is an efficient randomized algorithm LS such that LS(y) induces a uniform
distribution on L−1(y) for any y ∈ G

∗
1. In other words, LS(y) is a uniform random element in

L−1(y).

We slightly modify FullIdent to obtain an IND-ID-CCA secure IBE system where H1 is replaced by a
hash function into some set A. Since the change is so minor we refer to this new scheme as FullIdent’:

Setup: As in the FullIdent scheme. The only difference is that H1 is replaced by a hash function
H ′

1 : {0, 1}∗ → A. The system parameters also include a description of an admissible encoding
function L : A→ G

∗
1.
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Extract, Encrypt: As in the FullIdent scheme. The only difference is that in Step 1 these algorithms
compute QID = L(H ′

1(ID)) ∈ G
∗
1.

Decrypt: As in the FullIdent scheme.

This completes the description of FullIdent’. The following theorem shows that FullIdent’ is a chosen
ciphertext secure IBE (i.e. IND-ID-CCA), assuming FullIdent is.

Theorem 4.7. Let A be an IND-ID-CCA adversary on FullIdent’ that achieves advantage ε(k). Suppose
A makes at most qH1

queries to the hash function H ′
1. Then there is an IND-ID-CCA adversary B on

FullIdent that achieves the same advantage ε(k) and time(B) = time(A) + qH1
· time(LS)

Proof Sketch. Algorithm B attacks FullIdent by running algorithm A. It relays all decryption
queries, extraction queries, and hash queries fromA directly to the challenger and relays the challenger’s
response back to A. It only behaves differently when A issues a hash query to H ′

1. Recall that B only
has access to a hash function H1 : {0, 1}∗ → G

∗
1. To respond to H ′

1 queries algorithm B maintains a list
of tuples 〈IDj , yj〉 as explained below. We refer to this list as the (H ′

1)
list. The list is initially empty.

When A queries the oracle H ′
1 at a point IDi algorithm B responds as follows:

1. If the query IDi already appears on the (H ′
1)

list in a tuple 〈IDi, yi〉, respond with H ′
1(IDi) = yi ∈ A.

2. Otherwise, B issues a query for H1(IDi). Say, H1(IDi) = α ∈ G
∗
1.

3. B runs the sampling algorithm LS(α) to generate a random element y ∈ L−1(α).

4. B adds the tuple 〈IDi, y〉 to the (H ′
1)

list and responds to A with H ′
1(IDi) = y ∈ A. Note that y is

uniformly distributed in A as required since α is uniformly distributed in G
∗
1 and L is an `-to-1 map.

Algorithm B’s responses to all of A’s queries, including H ′
1 queries, are identical to A’s view in the real

attack. Hence, B will have the same advantage ε(k) in winning the game with the challenger. �

5 A concrete IBE system using the Weil pairing

In this section we use FullIdent’ to describe a concrete IBE system based on the Weil pairing. We first
review some properties of the pairing (see the Appendix for more details).

5.1 Properties of the Weil Pairing

Let p be a prime satisfying p = 2 mod 3 and let q > 3 be some prime factor of p + 1. Let E be the
elliptic curve defined by the equation y2 = x3 + 1 over Fp. We state a few elementary facts about this
curve E (see [43] for more information). From here on we let E(Fpr) denote the group of points on E
defined over Fpr .

Fact 1: Since x3 + 1 is a permutation on Fp it follows that the group E(Fp) contains p + 1 points. We
let O denote the point at infinity. Let P ∈ E(Fp) be a point of order q and let G1 be the subgroup
of points generated by P .

Fact 2: For any y0 ∈ Fp there is a unique point (x0, y0) on E(Fp), namely x0 = (y2
0 − 1)1/3 ∈ Fp.

Hence, if (x, y) is a random non-zero point on E(Fp) then y is uniform in Fp. We use this property
to build a simple admissible encoding function.

Fact 3: Let 1 6= ζ ∈ Fp2 be a solution of x3 − 1 = 0 in Fp2 . Then the map φ(x, y) = (ζx, y) is an
automorphism of the group of points on the curve E. Note that for any point Q = (x, y) ∈ E(Fp)
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we have that φ(Q) ∈ E(Fp2), but φ(Q) 6∈ E(Fp). Hence, Q ∈ E(Fp) is linearly independent of
φ(Q) ∈ E(Fp2).

Fact 4: Since the points P ∈ G1 and φ(P ) are linearly independent they generate a group isomorphic
to Zq × Zq. We denote this group of points by E[q].

Let G2 be the subgroup of F
∗
p2 of order q. The Weil pairing on the curve E(Fp2) is a mapping

e : E[q] × E[q] → G2 defined in the Appendix. For any Q, R ∈ E(Fp) the Weil pairing satisfies
e(Q, R) = 1. In other words, the Weil pairing is degenerate on E(Fp), and hence degenerate on the
group G1. To get a non-degenerate map we define the modified Weil pairing ê : G1 × G1 → G2 as
follows:

ê(P, Q) = e(P, φ(Q))

The modified Weil pairing satisfies the following properties:

1. Bilinear: For all P, Q ∈ G1 and for all a, b ∈ Z we have ê(aP, bQ) = ê(P, Q)ab.

2. Non-degenerate: If P is a generator of G1 then ê(P, P ) ∈ F
∗
p2 is a generator of G2.

3. Computable: Given P, Q ∈ G1 there is an efficient algorithm, due to Miller, to compute ê(P, Q) ∈ G2.
This algorithm is described in the Appendix. Its running time is comparable to exponentiation in
Fp.

Joux and Nguyen [28] point out that although the Computational Diffie-Hellman problem (CDH)
appears to be hard in the group G1, the Decisional Diffie-Hellman problem (DDH) is easy in G1 (as
discussed in Section 3).

BDH Parameter Generator G1: Given a security parameter 2 < k ∈ Z the BDH parameter
generator picks a random k-bit prime q and finds the smallest prime p such that (1) p = 2 mod 3, (2)
q divides p + 1, and (3) q2 does not divide p + 1. We write p = `q + 1. The group G1 is the subgroup
of order q of the group of points on the curve y2 = x3 + 1 over Fp. The group G2 is the subgroup of
order q of F

∗
p2 . The bilinear map ê : G1 ×G1 → G2 is the modified Weil pairing defined above.

The BDH parameter generator G1 is believed to satisfy the BDH assumption asymptotically. How-
ever, there is still the question of what values of p and q can be used in practice to make the BDH
problem sufficiently hard. At the very least, we must ensure that the discrete log problem in G1 is
sufficiently hard. As pointed out in Section 3 the discrete log problem in G1 is efficiently reducible
to discrete log in G2 (see [32, 17]). Hence, computing discrete log in F

∗
p2 is sufficient for computing

discrete log in G1. In practice, for proper security of discrete log in F
∗
p2 one often uses primes p that

are at least 512-bits long (so that the group size is at least 1024-bits long). Consequently, one should
not use this BDH parameter generator with primes p that are less than 512-bits long.

5.2 An admissible encoding function: MapToPoint

Let G1, G2 be two groups generated by G1 as defined above. Recall that the IBE system of Section
4.2 uses a hash function H1 : {0, 1}∗ → G

∗
1. By Theorem 4.7, it suffices to have a hash function

H1 : {0, 1}∗ → A for some set A, and an admissible encoding function L : A → G
∗
1. In what follows

the set A will be Fp, and the admissible encoding function L will be called MapToPoint.

Let p be a prime satisfying p = 2 mod 3 and p = `q−1 for some prime q > 3. We require that q does
not divide ` (i.e. that q2 does not divide p+1). Let E be the elliptic curve y2 = x3 +1 over Fp. Let G1

be the subgroup of points on E of order q. Suppose we already have a hash function H1 : {0, 1}∗ → Fp.
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Algorithm MapToPoint works as follows on input y0 ∈ Fp:

1. Compute x0 = (y2
0 − 1)1/3 = (y2

0 − 1)(2p−1)/3 ∈ Fp.

2. Let Q = (x0, y0) ∈ E(Fp) and set QID = `Q ∈ G1.

3. Output MapToPoint(y0) = QID.

This completes the description of MapToPoint.

We note that there are ` − 1 values of y0 ∈ Fp for which `Q = `(x0, y0) = O (these are the non-O
points of order dividing `). Let B ⊂ Fp be the set of these y0. When H1(ID) is one of these `−1 values
QID is the identity element of G1. It is extremely unlikely for H1(ID) to hit one of these points – the
probability is 1/q < 1/2k. Hence, for simplicity we say that H1(ID) only outputs elements in Fp \ B,
i.e. H1 : {0, 1}∗ → Fp \B. Algorithm MapToPoint can be easily extended to handle the values y0 ∈ B
by hashing ID multiple times using different hash functions.

Lemma 5.1. MapToPoint : Fp \B → G
∗
1 is an admissible encoding function.

Proof. The map is clearly computable and is a ` − to − 1 mapping. It remains to show that L
is samplable. Let P be a generator of E(Fp). Given a Q ∈ G

∗
1 the sampling algorithm LS does the

following: (1) pick a random b ∈ {0, . . . , ` − 1}, (2) compute Q′ = `−1 · Q + bqP = (x, y), and (3)
output LS(Q) = y ∈ Fp. Here `−1 is the inverse of ` in Z

∗
q . This algorithm outputs a random element

from the ` elements in MapToPoint−1(Q) as required. �

5.3 A concrete IBE system

Using FullIdent’ from Section 4.3 with the BDH parameter generator G1 and the admissible encoding
function MapToPoint we obtain a concrete IBE system. Note that in this system, H1 is a hash function
from {0, 1}∗ to Fp (where p is the finite field output by G1). The security of the system follows directly
from Theorem 4.4 and Theorem 4.7. We summarize this in the following corollary.

Corollary 5.2. The IBE system FullIdent’ using the BDH parameter generator G1 and the admissible
encoding MapToPoint is a chosen ciphertext secure IBE (i.e. IND-ID-CCA in the random oracle model)
assuming G1 satisfies the BDH assumption.

Performance. Algorithms Setup and Extract are very simple. At the heart of both algorithms is a
standard multiplication on the curve E(Fp). Algorithm Encrypt requires that the encryptor compute the
Weil pairing of QID and Ppub. Note that this computation is independent of the message to be encrypted,
and hence can be done once and for all. Once gID is computed the performance of the system is almost
identical to standard ElGamal encryption. Decryption is a single Weil pairing computation. We note
that the ciphertext length of BasicIdent using G1 is the same as in regular ElGamal encryption in Fp.

6 Extensions and Observations

Tate pairing and other curves. Our IBE system works with any efficiently computable bilinear
pairing ê : G1 × G1 → G2 between two groups G1, G2 as long as the BDH assumption holds. Many
different curves, or more generally Abelian varieties, are believed to give rise to such maps. For
example, one could use the curve y2 = x3 + x over Fp with p = 3 mod 4 and its endomorphism
φ : (x, y)→ (−x, iy) where i2 = −1. As another example, Galbraith [18] suggests using supersingular
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elliptic curves over a field of small characteristic to reduce the ciphertext size in our system. More
general Abelian varieties are proposed by Rubin and Silverberg [39]. We note that both encryption
and decryption in FullIdent can be made faster by using the Tate pairing on elliptic curves rather
than the Weil pairing [19, 1].

Asymmetric pairings. Our IBE system can use slightly more general bilinear maps, namely maps of
the form ê : G0×G1 → G2 where G0, G1, G2 are three groups of prime order q. Using the notation of
Section 4.1 the only change to BasicIdent is that we take P and Ppub as elements in G0 and let H1 be
a hash function H1 : {0, 1}∗ → G

∗
1. Everything else remains the same. However, to make the proof

of security go through (Lemma 4.2 in particular) we need a different complexity assumption which
we call the co-BDH assumption: given random P, aP, bP ∈ G0 and Q, aQ, cQ ∈ G1 no polynomial
time algorithm can compute ê(P, Q)abc with non-negligible probability. If one is willing to accept this
assumption then we can avoid using supersingular curves and instead use elliptic curves over Fp, p > 3
proposed by Miyaji et al. [35]. Curves E/Fp in this family are not supersingular and have the property
that if q divides |E(Fp)| then E[q] ⊆ E(Fp6) (recall that E[q] is the group containing all point in E of
order dividing q). One way to use these curves is to set G1 to be a cyclic subgroup of E(Fp) of order
q and G0 to be a different cyclic subgroup of E(Fp6) of the same order q. The standard Weil or Tate
pairings on G0×G1 can be used as the bilinear map ê. Note that hashing public keys onto G1 ⊆ E(Fp)
is easily done. Alternatively, to reduce the ciphertext size (which contains an element from G0) one
could take G0 as a subgroup of order q of E(Fp) and G1 as a different subgroup of E(Fp6) of the same
order. The question is how to hash public keys into G1. To do so, let tr : E(Fp6) → E(Fp) be the
trace map on the curve and define G1 to be the subgroup of E[q] containing all points P whose trace
is O, i.e., tr(P ) = O. Then given a hash function H : {0, 1}∗ → E[q] we can hash a public key ID

into G1 by computing: H1(ID) = 6H(ID) − tr(H(ID)) ∈ G1. Finally, we note that by modifying the
security proof appropriately one can take G1 = E[q] (a non-cyclic group) and then avoid computing
traces while hashing into G1 (see also [18]).

Distributed PKG. In the standard use of an IBE in an e-mail system the master-key stored at the PKG
must be protected in the same way that the private key of a CA is protected. One way of protecting
this key is by distributing it among different sites using techniques of threshold cryptography [20].
Our IBE system supports this in a very efficient and robust way. Recall that the master-key is some
s ∈ Z

∗
q . in order to generate a private key the PKG computes Qpriv = sQID, where QID is derived

from the user’s public key ID. This can easily be distributed in a t-out-of-n fashion by giving each
of the n PKGs one share si of a Shamir secret sharing of s mod q. When generating a private key

each of the t chosen PKGs simply responds with Q
(i)
priv = siQID. The user can then construct Qpriv

as Qpriv =
∑

λiQ
(i)
priv where the λi’s are the appropriate Lagrange coefficients.

Furthermore, it is easy to make this scheme robust against dishonest PKGs using the fact that DDH

is easy in G1. During setup each of the n PKGs publishes P
(i)
pub = siP . During a key generation

request the user can verify that the response from the i’th PKG is valid by testing that:

ê(Q
(i)
priv, P ) = ê(QID, P

(i)
pub)

Thus, a misbehaving PKG will be immediately caught. There is no need for zero-knowledge proofs
as in regular robust threshold schemes [21]. The PKG’s master-key can be generated in a distributed
fashion using the techniques of [22].

Note that a distributed master-key also enables threshold decryption on a per-message basis, without
any need to derive the corresponding decryption key. For example, threshold decryption of BasicIdent

ciphertext (U, V ) is straightforward if each PKG responds with ê(siQID, U).
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Working in subgroups. The performance of our IBE system (Section 5) can be improved if we work
in a small subgroup of the curve. For example, choose a 1024-bit prime p = 2 mod 3 with p = aq− 1
for some 160-bit prime q. The point P is then chosen to be a point of order q. Each public key ID is
converted to a group point by hashing ID to a point Q on the curve and then multiplying the point
by a. The system is secure if the BDH assumption holds in the group generated by P . The advantage
is that the Weil computation is done on points of small order, and hence is much faster.

IBE implies signatures. Moni Naor has observed that an IBE scheme can be immediately converted
into a public key signature scheme. The intuition is as follows. The private key for the signature
scheme is the master key for the IBE scheme. The public key for the signature scheme is the global
system parameters for the IBE scheme. The signature on a message M is the IBE decryption key
for ID = M . To verify a signature, choose a random message M ′, encrypt M ′ using the public key
ID = M , and then attempt to decrypt using the given signature on M as the decryption key. If the
IBE scheme is IND-ID-CCA, then the signature scheme is existentially unforgeable against a chosen
message attack. Note that, unlike most signature schemes, the signature verification algorithm here is
randomized. This shows that secure IBE schemes incorporate both public key encryption and digital
signatures. We note that the signature scheme derived from our IBE system has some interesting
properties [6].

7 Escrow ElGamal encryption

In this section we show that the Weil pairing enables us to add a global escrow capability to the
ElGamal encryption system. A single escrow key enables the decryption of ciphertexts encrypted
under any public key. Paillier and Yung have shown how to add a global escrow capability to the
Paillier encryption system [36]. Our ElGamal escrow system works as follows:

Setup: Let G be some BDH parameter generator. Given a security parameter k ∈ Z
+, the algorithm

works as follows:

Step 1: Run G on input k to generate a prime q, two groups G1, G2 of order q, and an admissible
bilinear map ê : G1 ×G1 → G2. Choose a random generator P of G1.

Step 2: Pick a random s ∈ Z
∗
q and set Q = sP .

Step 3: Choose a cryptographic hash function H : G2 → {0, 1}
n.

The message space isM = {0, 1}n. The ciphertext space is C = G1×{0, 1}
n. The system parameters

are params = 〈q, G1, G2, ê, n, P, Q, H〉. The escrow key is s ∈ Z
∗
q .

keygen: A user generates a public/private key pair for herself by picking a random x ∈ Z
∗
q and

computing Ppub = xP ∈ G1. Her private key is x, her public key is Ppub.

Encrypt: To encrypt M ∈ {0, 1}n under the public key Ppub do the following: (1) pick a random
r ∈ Z

∗
q , and (2) set the ciphertext to be:

C = 〈rP, M ⊕H(gr)〉 where g = ê(Ppub, Q) ∈ G2

Decrypt: Let C = 〈U, V 〉 be a ciphertext encrypted using Ppub. Then U ∈ G1. To decrypt C using
the private key x do:

V ⊕H(ê(U, xQ)) = M

Escrow-decrypt: To decrypt C = 〈U, V 〉 using the escrow key s do:

V ⊕H(ê(U, sPpub)) = M
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A standard argument shows that assuming that BDH is hard for groups generated by G the system
has semantic security in the random oracle model (recall that since DDH is easy we cannot prove
semantic security based on DDH). Yet, the escrow agent can decrypt any ciphertext encrypted using
any user’s public key. The decryption capability of the escrow agent can be distributed using the PKG
distribution techniques described in Section 6.

Using a similar hardness assumption, Verheul [46] described an ElGamal encryption system with
non-global escrow. Each user constructs a public key with two corresponding private keys, and gives
one of the private keys to the trusted third party. The trusted third party must maintain a database
of all private keys given to it by the various users.

8 Summary and open problems

We defined chosen ciphertext security for identity-based systems and proposed a fully functional IBE
system. The system has chosen ciphertext security in the random oracle model assuming BDH, a
natural analogue of the computational Diffie-Hellman problem. The BDH assumption deserves further
study considering the powerful cryptosystems derived from it. For example, it could be interesting to
see whether the techniques of [30] can be used to prove that the BDH assumption is equivalent to the
discrete log assumption on the curve for certain primes p.

Cocks [8] recently proposed another IBE system whose security is based on the difficulty of distin-
guishing quadratic residues from non-residues in the ring Z/NZ where N is an RSA modulus (i.e., a
product of two large primes). Cocks’ system is somewhat harder to use in practice that the IBE system
in this paper. Cocks’ system uses bit-by-bit encryption and consequently outputs long ciphertexts.
Also, encryption/decryption is a bit slower than the system described in this paper. Nevertheless, it is
encouraging to see that IBE systems can be built using very different complexity assumptions.

It is an open problem to build chosen ciphertext secure identity based systems that are secure in
the standard computation model (rather than the random oracle model). One might hope to use the
techniques of Cramer-Shoup [10] to provide chosen ciphertext security based on DDH. Unfortunately, as
mentioned in Section 3, the DDH assumption is false in the group of points on the curve E. However,
simple variants of DDH do seem to hold. In particular, the following two distributions appear to
be computationally indistinguishable: 〈P, aP, bP, cP, abcP 〉 and 〈P, aP, bP, cP, rP 〉 where a, b, c, r are
random in Zq. We refer to this assumption as BDDH. A chosen ciphertext secure identity-based system
strictly based on BDDH would be a plausible analogue of the Cramer-Shoup system. Building a chosen
ciphertext secure IBE (IND-ID-CCA) in the standard model is currently an open problem.
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A Definition of the Weil pairing

We define the Weil pairing and show how to efficiently compute it using an algorithm due to Miller [34].
To be concrete we present the algorithm as it applies to supersingular elliptic curves defined over a
prime field Fp with p > 3 (the curve y2 = x3 + 1 over Fp with p = 2 mod 3 is an example of such a
curve). The definition and algorithm easily generalize to computing the Weil pairing over other elliptic
curves. We state a few elementary facts about such curves [43]:

Fact 1: A supersingular curve E/Fp (with p > 3) contains p + 1 points in Fp. We let O denote the
point at infinity. The group of points over Fp forms a cyclic group of order p + 1. Let P ∈ E(Fp) be
a point order n where n divides p + 1.

Fact 2: The group of points E(Fp2) contains a point Q of order n which is linearly independent of
the points in E(Fp). Hence, E(Fp2) contains a subgroup which is isomorphic to the group Z

2
n. The

group is generated by P ∈ E(Fp) and Q ∈ E(Fp2). We denote this group by E[n].

Throughout this section we let G2 denote the subgroup of F
∗
p2 of order n. We will be working with

the Weil pairing e which maps pairs of points in E[n] to G2, i.e. e : E[n]× E[n]→ G2. To define the
pairing, we review a few basic concepts (see [29, pp. 243–245]). In what follows we let P and Q be
arbitrary points in E(Fp2).

Divisors A divisor is a formal sum of points on the curve E(Fp2). We write divisors as A =
∑

P ap(P )
where aP ∈ Z and P ∈ E(Fp2). For example, A = 3(P1)− 2(P2)− (P3) is a divisor. We will only
consider divisors A =

∑

P ap(P ) where
∑

P ap = 0.

Functions Roughly speaking, a function f on the curve E(Fp2) can be viewed as a rational function
f(x, y) ∈ Fp2(x, y). For any point P = (x, y) ∈ E(Fp2) we define f(P ) = f(x, y).

Divisors of functions Let f be a function on the curve E(Fp2). We define its divisor, denoted by
(f), as (f) =

∑

P ordP (f) · (P ). Here ordP (f) is the order of the zero that f has at the point
P . For example, let ax + by + c = 0 be the line passing through the points P1, P2 ∈ E(Fp2)
with P1 6= ±P2. This line intersects the curve at a third point P3 ∈ E(Fp2). Then the function
f(x, y) = ax + by + c has three zeroes P1, P2, P3 and a pole of order 3 at infinity. The divisor of
f is (f) = (P1) + (P2) + (P3)− 3(O).

Principal divisors Let A be a divisor. If there exists a function f such that (f) = A then we say
that A is a principal divisor. We know that a divisor A =

∑

P ap(P ) is principal if and only if
∑

P ap = 0 and
∑

P aP P = O. Note that the second summation is using the group action on the
curve. Furthermore, given a principal divisor A there exists a unique function f (up to constant
multiples) such that (A) = (f).

Equivalence of divisors We say that two divisors A,B are equivalent if their difference A − B is a
principal divisor. We know that any divisor A =

∑

P ap(P ) (with
∑

P aP = 0) is equivalent to a
divisor of the form A′ = (Q)− (O) for some Q ∈ E. Observe that Q =

∑

P aP P .

Notation Given a function f and a divisor A =
∑

P ap(P ) we define f(A) as f(A) =
∏

P f(P )aP .
Note that since

∑

P aP = 0 we have that f(A) remains unchanged if instead of f we use cf for
any c ∈ Fp2 .

We are now ready to define the Weil pairing of two points P, Q ∈ E[n]. Let AP be some divisor
equivalent to the divisor (P ) − (O). We know that nAP is a principal divisor (it is equivalent to
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n(P ) − n(O) which is clearly a principal divisor). Hence, there exists a function fP such that (fP ) =
nAP . Define AQ and fQ analogously. The Weil pairing of P and Q is defined as:

e(P, Q) =
fP (AQ)

fQ(AP )

This ratio defines the Weil pairing of P and Q whenever it is well defined (no division by zero occurred).
If this ratio is undefined we use different divisors AP ,AQ to define e(P, Q).

We briefly show that the Weil pairing is well defined. That is, the value of e(P, Q) is independent
of the choice of the divisor AP as long as AP is equivalent to (P )− (O) and AP leads to a well defined
value. The same holds for AQ. Let ÂP be a divisor equivalent to AP and let f̂P be a function so that

(f̂P ) = nÂP . Then ÂP = AP + (g) for some function g and f̂P = fP · g
n. We have that:

e(P, Q) =
f̂P (AQ)

fQ(ÂP )
=

fP (AQ)g(AQ)n

fQ(AP )fQ((g))
=

fP (AQ)

fQ(AP )
·
g(nAQ)

fQ((g))
=

fP (AQ)

fQ(AP )
·
g((fQ))

fQ((g))
=

fP (AQ)

fQ(AP )

The last equality follows from the following fact known as Weil reciprocity: for any two functions f, g
we have that f( (g) ) = g( (f) ). Hence, the Weil pairing is well defined.

Fact A.1. The Weil pairing has the following properties for points in E[n]:

• For all P ∈ E[n] we have: e(P, P ) = 1.

• Bilinear: e(P1 + P2, Q) = e(P1, Q) · e(P2, Q) and e(P, Q1 + Q2) = e(P, Q1) · e(P, Q2).

• When P, Q ∈ E[n] are collinear then e(P, Q) = 1. Similarly, e(P, Q) = e(Q, P )−1.

• n’th root: for all P, Q ∈ E[n] we have e(P, Q)n = 1, i.e. e(P, Q) ∈ G2.

• Non-degenerate in the following sense: if P ∈ E[n] satisfies e(P, Q) = 1 for all Q ∈ E[n] then
P = O.

As discussed in Section 5, our concrete IBE scheme uses the modified Weil pairing ê(P, Q) =
e(P, φ(Q)), where φ is an automorphism on the group of points of E.

Tate pairing. The Tate pairing [17] is another bilinear pairing that has the required properties for
our system. We slightly modify the original definition to fit our purpose. Define the Tate pairing of two

points P, Q ∈ E[n] as T (P, Q) = fP (AQ)
|F∗

p2
|/n

where fP and AQ are defined as above. This definition
gives a computable bilinear pairing T : E[n]× E[n]→ G2.

B Computing the Weil pairing

Given two points P, Q ∈ E[n] we show how to compute e(P, Q) ∈ F
∗
p2 using O(log p) arithmetic

operations in Fp. We assume P 6= Q. We proceed as follows: pick two random points R1, R2 ∈ E[n].
Consider the divisors AP = (P + R1)− (R1) and AQ = (Q + R2)− (R2). These divisors are equivalent
to (P )− (O) and (Q)− (O) respectively. Hence, we can use AP and AQ to compute the Weil pairing
as:

e(P, Q) =
fP (AQ)

fQ(AP )
=

fP (Q + R2)fQ(R1)

fP (R2)fQ(P + R1)
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This expression is well defined with very high probability over the choice of R1, R2 (the probability of
failure is at most O( log p

p )). In the rare event that a division by zero occurs during the computation of
e(P, Q) we simply pick new random points R1, R2 and repeat the process.

To evaluate e(P, Q) it suffices to show how to evaluate the function fP at AQ. Evaluating fQ(AP )
is done analogously. We evaluate fP (AQ) using repeated doubling. For a positive integer b define the
divisor

Ab = b(P + R1)− b(R1)− (bP ) + (O)

It is a principal divisor and therefore there exists a function fb such that (fb) = Ab. Observe that
(fP ) = (fn) and hence, fP (AQ) = fn(AQ). It suffices to show how to evaluate fn(AQ).

Lemma B.1. There is an algorithm D that given fb(AQ), fc(AQ) and bP, cP, (b+c)P for some b, c > 0
outputs fb+c(AQ). The algorithm only uses a (small) constant number of arithmetic operations in Fp2.

Proof. We first define two auxiliary linear functions g1, g2:

1. Let a1x + b1y + c1 = 0 be the line passing through the points bP and cP (if b = c then let
a1x + b1y + c1 = 0 be the line tangent to E at bP ). Define g1(x, y) = a1x + b1y + c1.

2. Let x + c2 = 0 be the vertical line passing through the point (b + c)P . Define g2(x, y) = x + c2

The divisors of these functions are:

(g1) = (bP ) + (cP ) + (−(b + c)P )− 3(O)

(g2) = ((b + c)P ) + (−(b + c)P )− 2(O)

By definition we have that:

Ab = b(P + R1)− b(R1)− (bP ) + (O)

Ac = c(P + R1)− c(R1)− (cP ) + (O)

Ab+c = (b + c)(P + R1)− (b + c)(R1)− ((b + c)P ) + (O)

It now follows that: Ab+c = Ab +Ac + (g1)− (g2). Hence:

fb+c(AQ) = fb(AQ) · fc(AQ) ·
g1(AQ)

g2(AQ)
(2)

This shows that to evaluate fb+c(AQ) it suffices to evaluate gi(AQ) for all i = 1, 2 and plug the results
into equation 2. Hence, given fb(AQ), fc(AQ) and bP, cP, (b + c)P one can compute fb+c(AQ) using a
constant number of arithmetic operations. �

LetD
(

fb(AQ), fc(AQ), bP, cP, (b+c)P
)

= fb+c(AQ) denote the output of AlgorithmD of Lemma B.1
above. Then one can compute fP (AQ) = fn(AQ) using the following standard repeated doubling
procedure. Let n = bmbm−1 . . . b1b0 be the binary representation of n, i.e. n =

∑m
i=0 bi2

i.

Init: Set Z = O, V = f0(AQ) = 1, and k = 0.

Iterate: For i = m, m− 1, . . . , 1, 0 do:

1: If bi = 1 then do: Set V = D(V, f1(AQ), Z, P, Z + P ), set Z = Z + P , and set k = k + 1.

2: If i > 0 set V = D(V, V, Z, Z, 2Z), set Z = 2Z, and set k = 2k.
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3: Observe that at the end of each iteration we have Z = kP and V = fk(AQ).

Output: After the last iteration we have k = n and therefore V = fn(AQ) as required.

To evaluate the Weil pairing e(P, Q) we run the above algorithm once to compute fP (AQ) and once to
compute fQ(AP ). The Tate pairing is evaluated similarly. Note that the repeated squaring algorithm
needs to evaluate f1(AQ). This is easily done since the function f1(x, y) (whose divisor is (f1) =
(P + R1)− (R1)− (P ) + (O) ) can be written out explicitly as follows:

1. Let a1x + b1y + c1 = 0 be the line passing through the points P and R1. Define the function:
g1(x, y) = a1x + b1y + c1.

2. Let x + c2 = 0 be the vertical line passing through the point P + R1. Define the function:
g2(x, y) = x + c2.

3. The function f1(x, y) is simply f1(x, y) = g2(x, y)/g1(x, y) which is easy to evaluate in Fp2 .
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