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Abstract

We construct two efficient Identity-Based Encryption (IBE) systems that admit selective-
identity security reductions without random oracles in groups equipped with a bilinear map.
Selective-identity secure IBE is a slightly weaker security model than the standard security
model for IBE. In this model the adversary must commit ahead of time to the identity that
it intends to attack, whereas in an adaptive-identity attack the adversary is allowed to choose
this identity adaptively. Our first system—BB1—is based on the well studied decisional bilinear
Diffie-Hellman assumption, and extends naturally to systems with hierarchical identities, or
HIBE. Our second system—BB2—is based on a stronger assumption which we call the Bilinear
Diffie-Hellman Inversion assumption and provides another approach to building IBE systems.

Our first system, BB1, is very versatile and well suited for practical applications: the basic
hierarchical construction can be efficiently secured against chosen-ciphertext attacks, and further
extended to support efficient non-interactive threshold decryption, among others, all without
using random oracles. Both systems, BB1 and BB2, can be modified generically to provide
“full” IBE security (i.e., against adaptive-identity attacks), either using random oracles, or
in the standard model at the expense of a non-polynomial but easy-to-compensate security
reduction.

Keywords: identity-based encryption, selective-ID security, adaptive-ID security, pairing-based
cryptography, asymmetric bilinear maps, BDH assumption, BDHI assumption, security proofs.

1 Introduction

Identity-Based Encryption (IBE) provides a public-key encryption mechanism where a public key is
an arbitrary string such as an email address or a telephone number. The corresponding private key
can only be generated by a Private-Key Generator (PKG) who has knowledge of a master secret.
In an IBE system, users authenticate themselves to the PKG and obtain private keys corresponding
to their identities. The identity-based encryption concept was first proposed two decades ago [61]
and several approaches were subsequently suggested in a few precursor papers [67, 68, 49]. It is
only a few years ago, however, that a formal security model and a practical implementation were
proposed. Boneh and Franklin [13, 14] define a security model for identity-based encryption and give
a construction based on the Bilinear Diffie-Hellman (BDH) problem. Cocks [28] describes another
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construction using quadratic residues modulo a composite (see also [15, 30]). Gentry et al. [39]
give a construction using lattices. The security of all these systems requires cryptographic hash
functions that are modeled as random oracles; i.e., these systems are only proven secure (under
non-interactive assumptions) in the random-oracle model [3]. A natural question is to devise a
secure IBE system without random oracles.

In the Boneh-Franklin security model the adversary can issue both adaptive chosen-ciphertext
queries and adaptive chosen-identity queries (i.e., the adversary can request the private key for
identities of its choice). Eventually, the adversary adaptively chooses the identity it wishes to attack
and asks for a semantic security challenge for this identity. Canetti et al. [22, 23] proposed a slightly
weaker security model, called selective-identity IBE. In this model the adversary must commit ahead
of time (non-adaptively) to the identity it intends to attack. The adversary can still issue adaptive
chosen-ciphertext and adaptive chosen-identity queries. Canetti et al. constructed a provably secure
IBE in this weaker model without the random-oracle model. However, their construction views
identities as bit strings, causing their system to require a bilinear map computation for every bit
in the identity.

We construct two efficient IBE systems that are provably secure in the selective-identity sense
without the random oracle model. In both systems, encryption requires no bilinear map compu-
tation and decryption requires at most two. Our first construction, which has become known as
BB1, is based on the Decision Bilinear Diffie-Hellman (Decision-BDH) assumption. This construc-
tion extends to give an efficient selective-identity secure Hierarchical IBE (HIBE) without random
oracles. Hierarchical IBE was defined in [42] and the first construction in the random oracle model
was given by Gentry and Silverberg [40]. Our efficient HIBE construction is related to the Gentry-
Silverberg system, but we are able to prove security without using random oracles. Our second
IBE construction, referred to as BB2, has comparable efficiency, but is based on a non-standard
assumption we call Decision Bilinear Diffie-Hellman Inversion (Decision-BDHI). Roughly speak-
ing, the assumption says that no efficient algorithm can distinguish e(g, g)1/x from random, given
g, gx, g(x2), . . . , g(xq) for some specified value of the parameter q.

Canetti et al. [23, 12] showed that any selective-identity, chosen-plaintext IBE gives a chosen-
ciphertext secure (CCA2) public key system. Consequently, both our IBE systems give efficient
CCA2-secure public key systems without random oracles. Performance of both CCA2-secure sys-
tems is close to the performance of the Cramer-Shoup system [29] which is based on Decision
Diffie-Hellman. Boneh and Katz [16, 12] gave a more efficient transformation from IBE to CCA2-
security, which when applied to our systems, gives CCA2-secure systems where encryption time
is as efficient as the Kurosawa-Desmedt [46] fast variant of Cramer-Shoup. Boyen, Mei, and Wa-
ters [20] constructed an even more efficient CCA2-secure system that non-generically exploits the
structure of our IBE constructions.

In subsequent work [7] we extended our first IBE system (BB1) to obtain the first “full” or
adaptive-ID secure IBE construction with a polynomial-time security reduction in the standard
model, albeit with a construction that was not practical. An important result of Waters [69]
enhances the BB1 framework into a practical fully secure IBE construction. The BB2 system can
be made fully secure in a similar way, as noticed independently by Shen and Kiltz [62, 45]. In
Section 7 we observe that any selective-ID secure IBE can be turned into an adaptive-ID secure
IBE in the standard model, generically, but at the cost of a non-polynomial-time security reduction.
One can however compensate for the inefficient reduction by increasing the size of the groups used
by the system by a constant ratio. The transformation applied to BB1 and BB2 results in two
simple and fully secure IBE systems without random oracles.

For completeness, we also discuss a few simple ways in which random oracles can be used to
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strengthen our constructions with respect to both adaptive-identity and chosen-ciphertext security.
When implemented intelligently using (asymmetric) pairings on curves, both our constructions
result in efficient adaptive-ID CCA2-secure IBE systems in the random-oracle model. The BB1

scheme in particular (being based on the decision-BDH assumption) leads to a very practical IBE
system.

2 Preliminaries

Before presenting our results we briefly review the definition of security for an IBE system. We
also review the definition of groups equipped with a bilinear map.

2.1 Selective Identity Secure IBE and HIBE Systems

Recall that an Identity-Based Encryption system (IBE) consists of four algorithms [61, 13]: Setup,
Extract, Encrypt, Decrypt. The Setup algorithm generates system parameters, denoted by params,
and a master key mk. The Extract algorithm uses the master key to extract a private key cor-
responding to a given identity. The encryption algorithm encrypts messages for a given identity
(using the system parameters) and the decryption algorithm decrypts ciphertexts using the private
key.

In a Hierarchical IBE [42, 40], identities are vectors, and there is a fifth algorithm called Derive.
A vector of dimension ` represents an identity at depth ` and a private key for it can be generated
using algorithm Extract, which requires the master key. Algorithm Derive is used to delegate keys
along the hierarchy. The algorithm takes as input an identity ID = (I1, . . . , I`) at depth ` and the
private key dID|`−1 of the parent identity ID|`−1 = (I1, . . . , I`−1) at depth `− 1 > 0. It outputs the
private key dID for identity ID. For convenience, we sometimes refer to the master key as the private
key at depth 0. We note that an IBE system is an HIBE where all identities are at depth 1. The
Setup algorithm in an HIBE scheme takes the maximum depth of the hierarchy as input.

Delegation history independence. In all our HIBE constructions, algorithm Derive outputs
the same distribution of private keys as algorithm Extract. This property, called delegation history
independence, ensures that the private key of an identity ID at a certain depth u reveals no informa-
tion about the delegation process used to derive that key. For example, for an identity ID at level
u > 3, a private key derived for ID from a level-1 key is sampled from the same distribution as a
private key for ID derived from a level-3 key. This property greatly simplifies the definition of HIBE
security. We define this property more precisely and discuss this issue further in Section 2.1.1.

Selective and Adaptive ID Security. The standard IBE security model of [13, 14] defines the
indistinguishability of ciphertexts under an adaptive chosen-ciphertext and chosen-identity attack
(IND-ID-CCA2). An adaptive chosen-identity attack means that the adversary is allowed to narrow
in adaptively to the identity it wishes to target (i.e., the public key on which it will be challenged).
A weaker notion of IBE security given by Canetti, Halevi, and Katz [22, 23] forces the adversary to
announce ahead of time the public key it will target, which is known as a selective-identity attack
(IND-sID-CCA2). We refer to such a system as a selective identity, chosen ciphertext secure IBE.

Security Game. We define IBE and HIBE security under a selective-identity attack (for a hier-
archy of maximum depth `) using the following game between a challenger and an adversary:
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Init: The adversary outputs an identity ID∗ = (I∗1, . . . , I
∗
k) where it wishes to be challenged.

Setup: The challenger runs the Setup algorithm giving it the maximum depth ` as input
(where ` = 1 for IBE). It gives the adversary the resulting system parameters params.
It keeps the master key mk to itself.

Phase 1: The adversary issues queries q1, . . . , qm where the i-th query qi is one of:

– Private-key extraction query on IDi, where IDi = (I1, . . . , Iu) for some 1 ≤ u ≤ `.
We require that IDi is not a prefix of ID∗, (i.e., it is not the case that u ≤ k and
Ii = I∗i for all i = 1, . . . , u). The challenger responds by running algorithm Extract
to obtain a private key di corresponding to the public key IDi. It sends di to the
adversary.

– Decryption query on a ciphertext Ci for an identity IDi (which may be equal to ID∗

or a prefix of ID∗). To respond, the challenger runs algorithm Extract to extract a
private key d corresponding to IDi, and then runs algorithm Decrypt to decrypt the
ciphertext Ci using the private key d. It sends the result to the adversary.

All queries may be made adaptively, that is, the adversary may ask qi with knowledge
of the challenger’s responses to q1, . . . , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length
plaintexts M0,M1 ∈ M on which it wishes to be challenged. The challenger picks a
random bit b ∈ {0, 1} and sets the challenge ciphertext to C = Encrypt(params, ID∗,Mb).
It sends C as the challenge to the adversary.

Phase 2: The adversary issues additional adaptive queries qm+1, . . . , qn where qi is one of:

– Private-key extraction query on IDi, where IDi is not a prefix of ID∗. The challenger
responds as in Phase 1.

– Decryption query on Ci for IDi, where Ci 6= C when IDi = ID∗ or some prefix of ID∗.
The challenger responds as in Phase 1.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins if b = b′.

We refer to such an adversary A as an IND-sID-CCA2 adversary. We define the advantage of the
adversary A in attacking an HIBE scheme E = (Setup,Extract,Derive,Encrypt,Decrypt), or an IBE
scheme E = (Setup,Extract,Encrypt,Decrypt), as

AdvE,A =
∣∣Pr[b = b′]− 1/2

∣∣
The probability is over the random bits used by the challenger and the adversary.

Definition 2.1. We say that an IBE or HIBE system E is (t, qID, qC, ε)-selective-identity, adaptive
chosen-ciphertext secure if for any IND-sID-CCA2 adversary A that runs in time t, makes at most
qID chosen private-key queries, and at most qC chosen decryption queries, we have that AdvE,A < ε.
We abbreviate this by saying that E is (t, qID, qC, ε)-IND-sID-CCA2 secure.

It is also customary to define the weaker notion of semantic security, or security under chosen
plaintext attack (CPA), where the adversary is forbidden from making decryption queries. The
adversary is still allowed to issue adaptive private-key queries.

Definition 2.2. We say that an IBE or HIBE system E is (t, qID, ε)-selective identity, chosen-
plaintext secure if E is (t, qID, 0, ε)-selective-identity, adaptive chosen-ciphertext secure. For concise-
ness, we say that E is (t, qID, ε)-IND-sID-CPA secure.
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Finally, we define the adaptive-identity counterparts to the above notions by removing the
Init phase from the attack game, and allowing the adversary to wait until the Challenge phase to
announce the identity ID∗ it wishes to attack. The adversary is allowed to make arbitrary private-
key queries in Phase 1 and then choose an arbitrary target ID∗. The only restriction is that he did
not issue a private-key query for ID∗ or a prefix of ID∗ during phase 1. The resulting security notions
are defined using the modified game as in Definitions 2.1 and 2.2, and are denoted IND-ID-CCA2
and IND-ID-CPA respectively.

In the sequel, our main focus will be to construct (H)IBE systems in the selective security
model. We briefly discuss adaptive-ID security in Section 7. We also come back to chosen-ciphertext
security in Section 8 where we strengthen our systems against active attacks.

2.1.1 Security with respect to HIBE Key Delegation

Our description of HIBE security follows the definitions in [42, 40] and the selective variants in [22,
23]. In this attack game, all private-key queries are answered using the root master secret mk
by running Extract(mk, ·). In reality, however, HIBE supports delegation where the private-key
for identity ID = (I1, . . . , Iu) can be derived from the private key of any parent identity such as
(I1, . . . , Iu−1). Note that a key derived for ID from the root key mk may be sampled from a different
distribution than a key derived for ID from a non-root key.

The security model presented in the previous section assumes that the system has delegation
history independence which means that all private keys, whether derived from the root or derived
by delegation, are sampled from the same distribution. Hence, in the security game it suffices to
respond to all private-key queries using the root master secret. All the HIBE constructions in this
paper have this property. More precisely, delegation history independence is defined as follows.

Definition 2.3. We say that an HIBE system has delegation history independence if for all outputs
of the Setup algorithm and all tuples of identities (ID1, . . . , IDq) the distribution of private keys
generated by Extract for these identities is the same as the distribution produced by Derive for the
same identities, no matter what valid parent keys are given to Derive as input.

Shi and Waters [63] define a relaxed HIBE security model which does not require delegation
history independence. The security model is more complex since the adversary gets to specify the
exact delegation path used in answering every private key query, as well as dependencies between
private keys. Removing the requirement for delegation history independence enables us to slightly
simplify algorithm Derive in our HIBE system. We revisit this issue in Section 4.4.

2.2 Bilinear Groups and Maps

We briefly review the necessary facts about bilinear maps or pairings and the groups over which
they are defined [44, 50]. For a prime p, we denote the finite field of order p by Zp. Wet let Z∗p
denote the multiplicative group of order p− 1 consisting of the elements in Zp \ {0}.

Let G and Ĝ be two (possibly distinct, but isomorphic) cyclic groups of large prime order p. Let
g ∈ G and ĝ ∈ Ĝ be respective generators of G and Ĝ. Let e : G× Ĝ→ Gt be a function that maps
pairs of elements in (G, Ĝ) to elements of a group Gt, where Gt has order p. The group operations
in G, Ĝ, and Gt are written multiplicatively, with identity elements denoted by 1. Further assume
that:

– the map e is efficiently computable, and so are the group operations in G, Ĝ, and Gt;
– the map e is non-degenerate, in the sense that e(g, ĝ) 6= 1;
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– the map e is bilinear, meaning that ∀u ∈ G,∀v ∈ Ĝ, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

We say that (G, Ĝ) forms a bilinear group pair, and that e is a bilinear map from (G, Ĝ) into Gt.
Such bilinear maps are often called bilinear pairings, or pairings for short.

Symmetric versus Asymmetric Pairings. The above definition is general in the sense that
no special constraint is placed on G and Ĝ (other than having prime order p). In a number of
applications, however, it is important [59] to require that G and Ĝ be the same group (i.e. G = Ĝ);
this leads to the notion of “symmetric” bilinear pairing ê : G×G→ Gt where both left and right
inputs to the pairing live in the same group. In the general case, G and Ĝ are distinct groups and
the bilinear group pair (G, Ĝ) is called “asymmetric”.

If a cryptographic scheme does not explicitly require the symmetry, it is usually advantageous
to use asymmetric bilinear groups. The advantages include more compact representations of group
elements, a far broader choice of elliptic curve implementations [32], and possibly even additional
security properties [35]. Asymmetric pairings have been used in signature schemes [17, 8, 11] to
minimize the signature size, but, by and large, the designers of encryption schemes have tended to
prefer symmetric pairings, favoring simplicity over generality. In this paper, we opt for the more
general asymmetric formulation. (To emulate the symmetric notation, the reader may disregard
all hats ˆ from the symbols.)

For concreteness, we shall suppose that the elements of G can be represented more compactly
than those of Ĝ, as happens frequently with asymmetric pairings.

Computable and Invertible Isomorphisms. In some examples of bilinear group pairs (G, Ĝ)
there is an isomorphism φ : Ĝ → G that is easy to compute and easy to invert. For example,
when G = Ĝ the isomorphism φ is simply the identity function. In other bilinear group pairs the
isomorphism may be easy to compute, but hard to invert. In other cases still, both φ and φ−1 may
be hard to compute.

All the constructions in this paper are indifferent to this issue; it makes no difference whether
the isomorphism φ is easily computable or not. For this reason we will not refer to φ in our
algorithms and proofs, thus enabling us to make use of all known bilinear group constructions.

Implementation Details. We refer the reader to [35] for a more detailed description of the
various types of pairings, and to [32, 14, 52, 2, 31, 56] for the construction of suitable curves for
their implementations. General algorithms for curve arithmetic including the pairing may be found
in [50, 5].

3 Complexity Assumptions

We review the standard Bilinear Diffie-Hellman (BDH) assumption, and define the Bilinear Diffie-
Hellman Inversion (BDHI) assumption. Since these assumptions were originally proposed in the
symmetric setting, we restate them here under a natural generalization for asymmetric pairings.

3.1 Bilinear Diffie-Hellman Assumption

The BDH problem for a symmetric pairing e : G×G→ Gt is stated as follows [44, 59, 13]:

Given a tuple (g, ga, gb, gc) ∈ G4 as input, output e(g, g)abc ∈ Gt.
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We generalize the BDH problem to asymmetric bilinear groups, where G need not be the same as
Ĝ, by giving the adversary (g, ga, gc, ĝ, ĝa, ĝb) ∈ G3 × Ĝ3.

Computational BDH. We say that an algorithm A has advantage AdvBDH
A = ε in solving the

computational BDH problem in (G, Ĝ) if

Pr
[
A
(
g , ga, gc, ĝ , ĝa, ĝb

)
= e(g, ĝ)abc

]
≥ ε

where the probability is over the random choice of exponents a, b, c in Zp, the random choice

of generators g of G and ĝ of Ĝ, and the random bits used by A. For symmetric pairings
(i.e. when G = Ĝ) we can simplify the assumption by choosing g at random in G and setting
ĝ = g. Then A is only given (g, ga, gb, gc) as input and is asked to compute e(g, g)abc. As we
shall see, our security proofs are oblivious to how the generators g and ĝ are chosen in the
assumption.

Decisional BDH. We similarly say that an algorithm B that outputs a bit γ ∈ {0, 1} has advan-
tage AdvD-BDH

A = ε in solving the Decision-BDH problem in (G, Ĝ) if∣∣∣Pr
[
B
(
g , ga, gc, ĝ , ĝa, ĝb, e(g, ĝ)abc

)
= 0
]
− Pr

[
B
(
g , ga, gc, ĝ , ĝa, ĝb, T

)
= 0
]∣∣∣ ≥ ε

where the probability is over the random choice of generators g of G and ĝ of Ĝ, the random
choice of exponents a, b, c in Zp, the random choice of T ∈ Gt, and the random bits used by
B.

Hash BDH. We can also define a weaker version of the decisional assumption with the help of a
hash function. Let H be a family of hash functions H = {H : Gt → {0, 1}m} for some m ∈
Z>0. We say that an algorithm B that outputs a bit γ ∈ {0, 1} has advantage AdvHashBDH

A = ε
in solving the Hash-BDH problem in (G, Ĝ) with respect to H if∣∣∣Pr

[
B
(
H, g , ga, gc, ĝ , ĝa, ĝb, H(e(g, ĝ)abc)

)
= 0
]
− Pr

[
B
(
H, g , ga, gc, ĝ , ĝa, ĝb, T

)
= 0
]∣∣∣ ≥ ε

where the probability is over the random choice of generators g of G and ĝ of Ĝ, the random
choice of exponents a, b, c in Zp, the random selection of the function H from the family H,
the random choice of T ∈ {0, 1}m, and the random bits consumed by B.

In the decisional BDH definition, we refer to the distribution (over G3× Ĝ3×Gt) of the 7-tuple in
the true instance (on the left) as PBDH , and in the false instance (on the right) as RBDH .

Definition 3.1. We say that the (t, ε)-(Decision-)BDH assumption holds in (G, Ĝ) if no t-time
algorithm has advantage at least ε in solving the (Decision-)BDH problem in (G, Ĝ).

Similarly, we say that the (t, ε,H)-Hash-BDH assumption holds in (G, Ĝ) if no t-time algorithm
has advantage at least ε in solving the Hash-BDH problem in (G, Ĝ) with respect to H.

Occasionally we omit the parameters and talk of the BDH, Decision-BDH, and Hash-BDH
assumptions. We remark that the Decision-BDH assumption in (G, Ĝ) implies that the regular
Decision Diffie-Hellman (DDH) assumption holds in Gt.

For certain hash families H, the Decision-BDH assumption implies the Hash-BDH assumption,
and hence Hash-BDH is a weaker assumption. For example, a standard application of the left-over
hash lemma [43] shows that with an appropriate choice of m and universal hash family H, the
Decision-BDH assumption implies the Hash-BDH assumption. For some groups G and Ĝ one can
prove this implication using a fixed hash function without resorting to the left-over hash lemma [27].
Either way we observe that Hash-BDH is a weaker (more precisely, no stronger) assumption than
Decision-BDH.
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3.2 Bilinear Diffie-Hellman Inversion Assumption

The q-BDHI problem for a symmetric pairing e : G×G→ Gt is stated as follows [6]:

Given a (q + 1)-tuple (g, gx, g(x2), . . . , g(xq)) ∈ (G)q+1 as input, output e(g, g)1/x ∈ Gt.

We generalize it to asymmetric bilinear groups and define the complexity assumption by providing
a sequence of powers of the generator in one of the groups (arbitrarily taken to be Ĝ).

Computational q-BDHI. An algorithm A has advantage AdvBDHI
q,A = ε in solving q-BDHI in

(G, Ĝ) if

Pr
[
A
(
g, gx, ĝ, ĝx, . . . , ĝ(xq)

)
= e(g, ĝ)1/x

]
≥ ε

where the probability is over the random choice of generators g of G and ĝ of Ĝ, the random
choice of x ∈ Z∗p, and the random bits used by A. For symmetric pairings (i.e. when G = Ĝ)
we can simplify the assumption by choosing g at random in G and setting ĝ = g. Then A is
only given g, gx, g(x2), . . . , g(xq) as in [6].

Decisional q-BDHI. Similarly, we say that an algorithm B that outputs a bit γ ∈ {0, 1} has
advantage AdvD-BDHI

q,A = ε in solving the q-Decision-BDHI problem in (G, Ĝ) if∣∣∣∣∣Pr

[
B

(
g, gx,

ĝ, ĝx, . . . , ĝ(xq), e(g, ĝ)1/x

)
= 0

]
− Pr

[
B

(
g, gx,

ĝ, ĝx, . . . , ĝ(xq), T

)
= 0

]∣∣∣∣∣ ≥ ε
where the probability is over the random choice of generators g of G and ĝ of Ĝ, the random
choice of x ∈ Z∗p, the random choice of T ∈ Gt, and the random bits used by B.

Hash q-BDHI. As before, we can relax the decisional assumption with the help of a hash function
family H = {H : Gt → {0, 1}m} for some m ∈ Z>0. We say that an algorithm B that outputs
a bit γ ∈ {0, 1} has advantage AdvHashBDHI

q,A = ε in solving the q-Hash-BDHI problem in (G, Ĝ)
with respect to H if∣∣∣∣∣Pr

[
B

(
H, g, gx,

ĝ, ĝx, . . . , ĝ(xq), H(e(g, ĝ)1/x)

)
= 0

]
− Pr

[
B

(
H, g, gx,

ĝ, ĝx, . . . , ĝ(xq), T

)
= 0

]∣∣∣∣∣ ≥ ε
where the probability is over the random choice of generators g of G and ĝ of Ĝ, the random
choice of x ∈ Z∗p, the random choice of T ∈ {0, 1}m, the random choice of function H ∈ H,
and the random bits consumed by B.

In the decisional definition, we refer to the (q + 4)-tuple distribution (over G2 × Ĝq+1 ×Gt) in the
true instance (on the left) as PBDHI , and in the false instance (on the right) as RBDHI .

Definition 3.2. We say that the (t, q, ε)-(Decision-)BDHI assumption holds in (G, Ĝ) if no t-time
algorithm has advantage at least ε in solving the q-(Decision-)BDHI problem in (G, Ĝ).

We say that the (t, q, ε,H)-Hash-BDHI assumption holds in (G, Ĝ) if no t-time algorithm has
advantage at least ε in solving the q-Hash-BDHI problem in (G, Ĝ) with respect to H.

Occasionally we drop the t and ε and refer to the q-BDHI and q-Decision-BDHI assumptions.
It is not known whether the q-BDHI assumption, for q > 1, is equivalent to BDH. A closely related
assumption called weak Diffie-Hellman was previously used in [51]. (See also Appendix A.)
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3.3 Asymptotic Formulation of the Assumptions

For completeness, we give an asymptotic formulation of the BDH and BDHI assumptions. Since
here we are interested in asymptotic behavior, we need a bilinear group generation algorithm G.

Definition 3.3. A bilinear group generator G is a Probabilistic Polynomial Time (PPT) algorithm
that, on input 1λ, outputs the description of groups G, Ĝ,Gt and a bilinear map e : G × Ĝ → Gt,
so that (G, Ĝ) form a bilinear group pair.

We now define the asymptotic BDH assumptions. In this setting, the various quantities denoted
by ε in Section 3.1 become functions of the security parameter λ.

Definition 3.4. Let G be a bilinear group generator. We say that the BDH, Decision BDH,
and Hash BDH assumptions hold for G if, for every PPT algorithm A, the respective functions
AdvBDH

A (λ), AdvD-BDH
A (λ), and AdvHashBDH

A (λ) are negligible functions of λ.

We similarly define the asymptotic BDHI assumptions. As in the previous case, the various ε
from Section 3.2 become functions of λ. Notice that this includes the parameter q.

Definition 3.5. Let G be a bilinear group generator. We say that the BDHI, Decision-BDHI, and
Hash-BDHI assumptions hold for G if, for every PPT algorithm A, and every polynomial q ∈ Z[X],
the respective functions AdvBDHI

q(λ),A(λ), AdvD-BDHI
q(λ),A (λ), and AdvHashBDHI

q(λ),A (λ) are negligible functions
of λ.

It is easy to interpret our results asymptotically using Definition 3.3 and the asymptotic assump-
tions.

3.4 A Discussion of our Asymmetric Formulation

Compared with the original, symmetric-pairing formulations of BDH [13] and BDHI [6], the defini-
tions we give here involve problem instances containing two more elements. This is because some
of the elements must be given explicitly in each group G and Ĝ, in accordance with our choice not
to rely on the isomorphisms φ and φ−1 to be or not to be efficiency computable.

The BDH problem in symmetric bilinear groups was to compute (or recognize, or hash) e(g, g)abc

given g, ga, gb, gc. In asymmetric groups, we seek to find e(g, ĝ)abc given g, ga, gc, and ĝ, ĝa, ĝb. This
is not the weakest possible generalization, since the a-th power is given in both groups. This
repetition (which is unnecessary for symmetric pairings since g = ĝ) is often needed in proofs using
asymmetric pairings. We note that one can easily verify that an input tuple is well formed by using
the pairing to check that (g, ĝ, ga, ĝa) is a valid Diffie-Hellman tuple.

4 BB1 : Efficient IBE/HIBE From BDH Without Random Oracles

We construct an efficient HIBE system that is selective-identity chosen-plaintext secure without
random oracles based on the Decision-BDH assumption. In particular, this implies an efficient
selective-identity chosen-ciphertext secure HIBE based on Decision-BDH without random oracles,
from one of the transformations given in [12, 20].

The challenge in building secure IBE and HIBE systems is that in the proof of security the
simulator must answer private-key queries from the attacker. But this seems paradoxical: if the
simulator knows all private keys then the simulator learns nothing new from the attacker. Fortu-
nately, in the selective-security game the simulator needs to have the private keys for all identities
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except for one: the challenge identity. In both our systems, the simulator uses a specially crafted
method for generating private keys that enables it to generate keys for all identities, except for
the challenge identity. Specifically, if one plugs the challenge identity into the simulator’s key
generation algorithm then the calculation results in a division by zero.

4.1 Core HIBE Construction

We are given a bilinear map e : G × Ĝ → Gt over a bilinear group pair (G, Ĝ) of prime order p,
with respective generators g ∈ G and ĝ ∈ Ĝ. The size of p is determined by the security parameter.

For the time being we make two simplifying assumptions. First, we assume that public keys
(IDs) at depth k are vectors of elements in Z∗p. We write ID = (I1, . . . , Ik) ∈ (Z∗p)k, where the j-th
component corresponds to the identity at level j. We later extend the construction to arbitrary
public keys in {0, 1}∗ by first hashing each component Ij using a collision-resistant hash H :
{0, 1}∗ → Z∗p. In fact, we will show in Section 6 that for selective-ID security, a second-preimage-
resistant hash is sufficient. Second, we temporarily assume that the messages to be encrypted are
encoded as elements of Gt. We later relax this assumption in Section 4.3.
The BB1 HIBE system works as follows:

Setup(`): To generate system parameters for an HIBE system of maximum depth `, given bilinear
groups (G, Ĝ) with generators (g, ĝ), the setup algorithm first selects a random α ∈ Zp, and
sets g1 = gα and ĝ1 = ĝα. It then picks ` random numbers δ1, . . . , δ` from Zp, and sets

hi = gδi and ĥi = ĝδi for each i = 1, . . . , `. Finally, it picks a random β ∈ Zp, sets ĝ0 = ĝαβ,
and computes v = e(g, ĝ0) = e(g, ĝ)αβ. The public parameters params and the master secret
mk are given by

params =
(
g, g1, h1, . . . , h`, ĝ, ĝ1, ĥ1, . . . , ĥ`, v

)
∈ G2+` × Ĝ2+` ×Gt

mk =
(
ĝ0

)
∈ Ĝ

Extract(mk, ID): To extract a private key dID for an identity ID = (I1, . . . , Ij) ∈ (Z∗p)j of depth
j ≤ `, the authority holding the master key chooses random r1, . . . , rj ∈ Zp and outputs

dID =

(
ĝ0

j∏
k=1

(ĝIk
1 ĥk)

rk , ĝr1 , . . . , ĝrj
)
∈ Ĝ1+j (1)

Derive(dID|j−1, ID): The private key for ID can be generated hierarchically given a private key for

the parent identity ID|j−1 = (I1, . . . , Ij−1) ∈ (Z∗p)j−1. Indeed, let dID|j−1 = (d0, . . . , dj−1) ∈ Ĝj

be the private key for ID|j−1. To generate dID, pick random r1, . . . , rj ∈ Zp and output

dID =
(
d0 ·

j∏
k=1

(ĝIk
1 ĥk)

rk , d1 · ĝr1 , . . . , dj−1 · ĝrj−1 , ĝrj
)
∈ Ĝ1+j

Notice that this amounts to taking dID = (d0 · (ĝ
Ij
1 ĥj)

rj , d1, . . . , dj−1, ĝ
rj
)

, which is a valid

key, and then randomizing it with the exponents r1, . . . , rj−1 to ensure that the distribution
of derived keys is the same as the distribution of keys generated by Extract.
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Encrypt(params, ID,M): To encrypt a message M ∈ Gt under the public key ID = (I1, . . . , Ij) ∈
(Z∗p)j , pick a random s ∈ Zp and output

C =

(
M vs, gs, (gI1

1 h1)s, . . . , (g
Ij
1 hj)

s

)
∈ Gt ×G1+j

Decrypt(dID, C): To decrypt a given ciphertext C = (A,B,C1, . . . , Cj) ∈ Gt × G1+j using the

private key dID = (d0, d1, . . . , dj) ∈ Ĝ1+j , output

A ·
j∏

k=1

e(Ck, dk)
/
e(B, d0) ∈ Gt

The system in consistent. Indeed, for a valid ciphertext encrypted under the identity ID =
(I1, . . . , Ij) for which the private key dID is computed as in (1), we have

A ·
∏j
k=1 e(Ck, dk)

e(B, d0)
= A ·

∏j
k=1 e(g

Ik
1 hk, ĝ)s rk

e(g, ĝ0)s
∏j
k=1 e(g, ĝ

Ik
1 ĥk)s rk

= A · 1

vs
= M

4.2 Security Reduction

We prove security of our HIBE system under the Decision-BDH assumption in (G, Ĝ) in the stan-
dard model.

Theorem 4.1. Suppose the (t, ε)-Decision-BDH assumption holds in (G, Ĝ). Then the previously
defined “ BB1” `-HIBE system is (t′, qID, ε)-selective identity, chosen-plaintext (IND-sID-CPA) secure
for arbitrary ` and qID, and all t′ < t − Θ(` qID) expressed in the time unit of computing a general
exponentiation in G or Ĝ.

Concretely, if A is a qID-IND-sID-CPA adversary for BB1 with advantage ε, then there exists a
Decision-BDH adversary B for (G, Ĝ) with the same advantage ε, and running in approximately
the same time as A.

Proof. Suppose A has advantage ε in attacking the HIBE system. We build an algorithm B that
solves the Decision-BDH problem in (G, Ĝ). Algorithm B is given as input a random 7-tuple
(g, ga, gc, ĝ, ĝa, ĝb, T ) that is either sampled from PBDH (where T = e(g, ĝ)abc) or from RBDH
(where T is uniform and independent in Gt). Algorithm B’s goal is to output 1 if T = e(g, ĝ)abc

and 0 otherwise. Set g1 = ga, g3 = gc and similarly ĝ1 = ĝa, ĝ2 = ĝb. Algorithm B works by
interacting with A in a selective identity game as follows:

Initialization. The selective-identity game begins with A first outputting an identity ID∗ =
(I∗1, . . . , I

∗
k) ∈ (Z∗p)k of depth k ≤ `, that it intends to attack. If k < ` then B appends

to ID∗ a suffix of ` − k zeroes to make ID∗ a vector of length `; hence, from here on ID∗ is
assumed to be a vector in (Zp)` which we call the padded ID∗.

Setup. To generate the system parameters, algorithm B picks random α1, . . . , α` ∈ Zp and defines

hj = g
−I∗j
1 gαj ∈ G and ĥj = ĝ

−I∗j
1 ĝαj ∈ Ĝ for j = 1, . . . , `. It also calculates v = e(g1, ĝ2) ∈ Gt.

Algorithm B gives A the system parameters params = (g, g1, h1, . . . , h`, ĝ, ĝ1, ĥ1, . . . , ĥ`, v).
The corresponding master key, which is unknown to B, is equal to ĝ0 = ĝab ∈ Ĝ.
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Phase 1. Algorithm A issues up to qID private key queries to B, one at a time. Consider a query for
the private key corresponding to ID = (I1, . . . , Iu) ∈ (Z∗p)u where u ≤ `. The only restriction
is that ID not be a prefix of ID∗ before we padded ID∗ with zeroes. But since components of
ID are restricted to Z∗p it follows that ID cannot be a prefix of the padded ID∗. Hence, there
must exist an index j ∈ {1, . . . , u} such that Ij 6= I∗j . To respond to the query, algorithm B
first derives a private key for the identity (I1, . . . , Ij) from which it then constructs a private
key for the requested identity ID = (I1, . . . , Ij , . . . , Iu).

For the first step, B picks random elements r1, . . . , rj ∈ Zp and sets

d0 = ĝ

−αj
Ij−I∗

j

2

j∏
n=1

(ĝIn
1 ĥn)rn , d1 = ĝr1 , . . . , dj−1 = ĝrj−1 , dj = ĝ

−1
Ij−I∗

j

2 grj (2)

We claim that (d0, d1, . . . , dj) is a correctly distributed and valid random private key for the
identity (I1, . . . , Ij). To see this, let r̃j = rj − b/(Ij − I∗j ) in Zp. Then we have that

ĝ

−αj
(Ij−I∗

j
)

2 (ĝ
Ij
1 ĥj)

rj = ĝ

−b αj
(Ij−I∗

j
) (ĝa (Ij−I∗j ) ĝαj )rj = ĝa b (ĝa (Ij−I∗j )ĝαj )

rj− b
Ij−I∗

j = ĝ0 (ĝ
Ij
1 ĥj)

r̃j

It follows that the private key (d0, d1, . . . , dj) defined in (2) satisfies

d0 = ĝ0 ·
j−1∏
n=1

(ĝIn
1 ĥn)rn · (ĝIj

1 ĥj)
r̃j , d1 = ĝr1 , . . . , dj−1 = ĝrj−1 , dj = ĝr̃j

where the exponents r1, . . . , rj−1, r̃j are uniform and independent in Zp. This matches the
distribution of a private key generated by Extract. Hence, (d0, d1, . . . , dj) is a valid private
key for (I1, . . . , Ij).

For the second step, algorithm B derives a private key for the requested ID = (I1, . . . , Ij , . . . , Iu)
by repeatedly applying the Derive procedure u − j times starting from the private key
(d0, d1, . . . , dj) just constructed, and gives A the end result.

Note that this procedure will fail to produce a private key for any prefix of ID∗. Hence, B can
generate private keys for all identities, except for prefixes of ID∗, as required.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ Gt on which
it wishes to be challenged. Algorithm B picks a random bit γ ∈ {0, 1} and responds with the

challenge ciphertext C∗ = (Mγ T, g3, g
α1
3 , . . . , gαk3 ). Since gαi = g

I∗i
1 hi for all i, we have that

C∗ =
(
Mγ T, gc, (g

I∗1
1 h1)c, . . . , (g

I∗k
1 hk)

c
)

Hence, when T = e(g, ĝ)abc = e(g, ĝ0)c = vc, i.e., when B’s input 7-tuple is sampled from
PBDH , then C∗ is a valid encryption of Mγ under the (unpadded) public key (I∗1, . . . , I

∗
k)

initially chosen by the adversary. On the other hand, when T is uniform and independent in
Gt, i.e., when B’s input 7-tuple is sampled from RBDH , then C∗ is independent of γ in the
adversary’s view.

Phase 2. Algorithm A continues to adaptively issue queries not issued in Phase 1, up to a total
of qID queries. Algorithm B responds as before.
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Guess. Finally, A outputs a guess γ′ ∈ {0, 1}. Algorithm B concludes its own game by outputting
a guess as follows. If γ = γ′ then B outputs 1 meaning T = e(g, ĝ)abc. Otherwise, it outputs 0
meaning T 6= e(g, ĝ)abc.

When B’s input 7-tuple is sampled from PBDH (where T = e(g, ĝ)abc) then A’s view of the sim-
ulation is identical to a real attack, and therefore A must satisfy |Pr[γ = γ′]− 1/2| > ε. On the
other hand, when B’s input 7-tuple is sampled from RBDH (where T is uniform in Gt) then A’s
advantage is nil and thus Pr[γ = γ′] = 1/2. Therefore, with a, b, c uniform in Zp, and T uniform in
Gt, we have that∣∣∣∣Pr

[
B(g , ga, gc, ĝ , ĝa, ĝb, e(g, g)abc) = 0

]
− Pr

[
B(g , ga, gc, ĝ , ĝa, ĝb, T ) = 0

]∣∣∣∣ ≥ ∣∣∣∣12 ± ε− 1

2

∣∣∣∣ = ε

as required. This completes the proof of Theorem 4.1.

We note that even though the BDH assumptions stated in Section 3.1 required the group
generators g, ĝ to be random, our reduction does not rely on this property and works for arbitrary
generators. Indeed, the simulator B passes the given generators g, ĝ to A without modification.
Thus, our system remains secure under a “Decision-BDH” assumption that might hold only for
specific generators (g, ĝ), as long as B is given the generators.

4.3 (H)IBE with Security from the Hash-BDH Assumption

In Theorem 4.1 we proved security of our system based on the Decision-BDH assumption. Here
we briefly observe that a simple variant of the BB1 system can be proven secure under the weaker
Hash-BDH assumption defined in Section 3.1.

Recall from Section 3.1 that Hash-BDH is defined with respect to a family of hash functions
H of the form H : Gt → {0, 1}m for some m ∈ Z>0. To prove security under Hash-BDH, we
slightly modify the system to admit messages encoded as bit strings M ∈ {0, 1}m, and to hash the
term vs during the encryption process and similarly during decryption. For simplicity, we describe
these modifications as they apply to the BB1-IBE system; the modification to the BB1-HIBE is
analogous.

Setup(1): To generate IBE system parameters, first, select a random α ∈ Zp, and set g1 = gα

and ĝ1 = ĝα. Next, select a random δ ∈ Zp and set h = gδ and ĥ = ĝδ. Then, pick a
random β ∈ Zp, set ĝ0 = ĝαβ, and compute v = e(g, ĝ0). Finally, pick a random hash
function H from H. The public parameters and the master key are respectively given by
params = (H, g, g1, h, v) and mk = ĝ0. (Without hierarchy, ĝ, ĝ1, ĥ may be omitted from
params.)

Extract(mk, ID): To extract a private key dID for an identity ID ∈ Z∗p, pick a random r ∈ Zp and

output dID = (ĝ0 (ĝID1 ĥ)r, ĝr).

Encrypt(params, ID,M): To encrypt a message M ∈ {0, 1}m under the public key ID ∈ Z∗p, pick a

random s ∈ Zp and output C =
(
M ⊕H(vs), gs, (gID1 h)s

)
.

Decrypt(dID, C): To decrypt a given ciphertext C = (A,B,C1) using the private key dID = (d0, d1),
output A⊕H( e(B, d0)/e(C1, d1) ) = M .

Theorem 4.1 can now be restated in terms of Hash-BDH as follows. The proof is almost identical
to the proof of Theorem 4.1.
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Theorem 4.2. Suppose the (t, ε,H)-Hash-BDH assumption holds in (G, Ĝ). Then the preceding
“hashed- BB1” IBE system is (t′, qID, ε)-selective identity, chosen-plaintext (IND-sID-CPA) secure for
arbitrary qID and ε, and any t′ < t − Θ(` qID) expressed in the time unit of exponentiation in G or
Ĝ.

A benefit of the Hash-BDH system over the Decision-BDH one is that the ciphertext no longer
contains any element of Gt, whose representation is potentially much larger than the amount of
information it can convey (for bilinear groups realized on elliptic curves, the representation of
elements of Ĝ and Gt without compression tends to be much larger than that of G). In the Hash-
BDH construction with ` levels of hierarchy, the ciphertext overhead amounts to `+ 1 elements of
G.

4.4 Relaxed Hierarchical Key Derivation

As already discussed in Section 2.1, we adopted a strong HIBE security model that requires private
keys to have the same distribution regardless of how the keys were created. In particular, it
should be information-theoretically impossible to tell whether a private key dID for an identity
ID = (I1, . . . , I`) was derived from a parent private key dID|`−1 or extracted independently from the
master secret, even if the parent key is revealed.

For HIBE schemes such as BB1 where private keys are not deterministic, the preceding require-
ment forces the hierarchical key derivation procedure to re-randomize fully all key components that
are passed from parent to child.

The BB1 hierarchical key derivation can be made slightly more efficient under the weaker HIBE
notion discussed in Section 2.1.1 that does not require independence of the private keys from
their derivation history. In this case, the BB1 HIBE supports the following simplified derivation
algorithm:

Derive′(dID|j−1, ID): To generate a functional (but incompletely re-randomized) private key for a

child identity ID = (I1, . . . , Ij) ∈ (Z∗p)j given a private key dID|j−1 = (d0, . . . , dj−1) ∈ Ĝj for
the parent identity ID|j−1 = (I1, . . . , Ij−1) ∈ (Z∗p)j−1, pick a random rj ∈ Zp and output

dID =
(
d0 · ĝ

rjIj
1 ĥ

rj
j , d1, . . . , dj−1, ĝrj

)
∈ Ĝ1+j

We omit the formal security model and security reduction for this relaxed notion of HIBE.

4.5 Efficiency Considerations

The BB1 (H)IBE system of Sections 4.1 and its variant of Section 4.3 present a number of oppor-
tunities for fast implementation, which we now explore.

Encryption. We already noted that the Encrypt algorithm does not require any pairing computa-
tion. Furthermore, since all exponentiations (and multi-exponentiations) in the Encrypt algorithm
use constant bases for a given set of public parameters params, these exponentiations can be done
very efficiently by using pre-computations. By segmenting the exponents in W -bit windows, and
by pre-computing the power gy·2

k
for all W -bit integers y = 0, . . . , 2W − 1 and all k < log p such

that W |k, one can implement an exponentiation using only d 1
W log pe group multiplications, com-

pared with the usual W -bit windowed exponentiation algorithm which requires about dW+1
W log pe

multiplications. This observation results in much faster encryption than in Boneh-Franklin IBE,
as well as in non-IBE public-key systems based on discrete logarithm, such as ElGamal, where (at
least) one exponentiation base will vary from user to user.
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Decryption. The main computational task of the Decrypt algorithm involves taking the product
of j + 1 pairings (or their inverses). We note that a product of j pairings can be computed more
efficiently than computing j individual pairings, with a product or ratio of two pairings being almost
as fast as a single pairing [60].

Private Key Extraction. In the case of a non-hierarchical IBE system without secret sharing,
the Extract algorithm can be implemented very efficiently. The implementation makes use of the
discrete logarithms α = dlogg(g1) and δ = dlogg(h) (or δ1 = dlogg(h1)), which is accommodated by
slightly modifying the Setup algorithm to preserve the ephemeral exponents α and δ (or δ1) along
with the master key g0 for future use. Under these assumptions, the private key dID returned by
Extract for a given identity ID can be efficiently calculated as

dID =
(
ĝ0 (ĝID1 ĥ)r, ĝr

)
=
(
ĝαβ+r (α ID+δ), ĝr

)
=
(
ĝ0 · ĝξ, ĝr

)
where ξ = r (α ID + δ) ∈ Zp. Since ĝ0 is constant, the only variable quantities in the right-most
expression are the two powers ĝξ and ĝr respectively obtained by raising the common fixed base
ĝ to the known exponents ξ and r. Without precomputation, the cost of jointly computing both
quantities slightly exceeds that of a single exponentiation in Ĝ, which for the sake of comparison
is also the cost of key generation in the Boneh-Franklin IBE system. Furthermore, since here the
base of exponentiation ĝ is fixed, precomputation techniques can be exploited to reduce further the
total cost to a fraction of that level. For example, using an exponentiation algorithm with W -bit
windows, the asymptotic amortized cost of key extraction is found to be about 2

W+1 that of the
Boneh-Franklin system, i.e., a threefold speedup using 5-bit windows.

5 BB2 : Efficient IBE From BDHI Without Random Oracles

We construct a second efficient IBE system that is selective identity, chosen plaintext secure without
random oracles, based on the q-Decision-BDHI assumption defined in Section 3.2. This gives a very
different approach to constructing IBE systems. The main benefit of this system is that decryption
is slightly simpler than in the system of the previous section. Encryption efficiency and ciphertext
size are nominally the same; and the public parameters are only three elements, as opposed to four
in the previous system. The price to pay is the reliance on a stronger assumption and a lack of
flexibility (e.g., more complex hierarchies and no support for threshold key generation).

5.1 IBE Construction

We are given a bilinear map e : G × Ĝ → Gt over a bilinear group pair (G, Ĝ) of prime order p,
with respective generators g ∈ G and ĝ ∈ Ĝ. The size of p is determined by the security parameter.

For now, we assume that the public keys (ID) are elements in Z∗p, although we later show that
arbitrary strings in {0, 1}∗ can be used as identities by first hashing them using a collision resistant
hash H : {0, 1}∗ → Z∗p. We also assume that the messages to be encrypted are represented as
elements in Gt. The IBE system works as follows:

Setup(1): To generate the IBE system parameters given a bilinear group pair (G, Ĝ) with genera-
tors (g, ĝ), the setup algorithm first selects a random generator ĥ of Ĝ. Next, the algorithm
computes v = e(g, ĥ). It then selects random numbers x, y ∈ Z∗p, and defines X = gx and
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Y = gy. The public parameters params and the master secret mk are given by

params =
(
g, X, Y, v

)
∈ G3 ×Gt

mk =
(
x, y, ĥ

)
∈ (Z∗p)2 × Ĝ

Extract(mk, ID): To extract a private key for the public key ID ∈ Z∗p, pick a random r ∈ Zp such

that x+ r y + ID 6= 0 (mod p), compute K = ĥ1/(ID+x+ry), and output the private key

dID =
(
r, K

)
∈ Zp × Ĝ

Encrypt(params, ID,M): To encrypt a message M ∈ Gt under public key ID ∈ Z∗p, pick a random
s ∈ Z∗p and output the ciphertext

CT =
(
M vs, Y s, Xs gs·ID

)
∈ Gt ×G2

Decrypt(dID,CT): To decrypt a ciphertext CT = (A,B,C) using the private key dID = (r,K),
output

A
/
e(BrC,K) ∈ Gt

The system is consistent. Indeed, for a private key dID and a valid ciphertext encrypted under a
matching public key ID, we have

A

e(BrC,K)
=

A

e(gs(ry+x+ID), ĥ1/(ID+x+ry))
=

A

e(g, ĥ)s
=
A

vs
= M

Size and Performance. Provided that the same bilinear group pair (G, Ĝ) is used, ciphertext
size and encryption time are similar to our first IBE system described earlier, and supports the same
pre-computation optimizations. Decryption requires one exponentiation followed by one pairing
computation, as opposed to a product (or ratio) of two pairings in our earlier system, and is thus
possibly slightly simpler. We note however that BB2 is not necessarily more efficient than BB1, as
discussed in Section 5.3.

Hash-BDHI Construction. The system above may be modified like our first system as in
Section 4.3, by requiring M ∈ {0, 1}m and hashing the blinding factor vs using some function
H ∈ H = {H : Gt → {0, 1}m} during encryption, and similarly during decryption. The security of
the resulting system would then rely on the q-Hash-BDHI assumption rather than q-Decision-BDHI.
The modifications to the above construction, and to the security proof below, are straightforward.

Hierarchies and Other Extensions. The BB2 system can be generalized to support hierarchies,
delegation, and other features, but not as easily as the BB1 system. We refer to [19] for details.

5.2 Proving Security

We prove security of the above IBE scheme under the q-Decision-BDHI assumption from Section 3.2.

Theorem 5.1. Suppose the (t, q, ε)-Decision-BDHI assumption holds in groups (G, Ĝ) of size p.
Then the “ BB2” IBE system is (t′, qID, ε)-selective-identity, chosen-plaintext (IND-sID-CPA) secure
for any qID < q, and any t′ < t−Θ(q2) expressed in the time unit of exponentiation in G or Ĝ.
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Proof. Suppose an algorithmA has advantage ε in attacking the IBE system. We build an algorithm
B that uses A to solve the q-Decision-BDHI problem in (G, Ĝ). Algorithm B is given as input a
random (q + 4)-tuple (g, gα, ĝ, ĝα, ĝ(α2), . . . , ĝ(αq), T ) ∈ (G)2 × (Ĝ)q+1 × Gt, that is either sampled
from PBDHI (where T = e(g, ĝ)1/α) or from RBDHI (where T is uniform and independent in
Gt). Algorithm B’s goal is to output 1 if T = e(g, ĝ)1/α and 0 otherwise. Algorithm B works by
interacting with A in a selective identity game as follows:

Preparation. Algorithm B builds a generator ĥ ∈ Ĝ for which it knows q − 1 pairs of the form
(wi, ĥ

1/(α+wi)) for random w1, . . . , wq−1 ∈ Z∗p. This is done as follows:

1. Pick random w1, . . . , wq−1 ∈ Z∗p and τ ∈ Z∗p. Let f(z) be the polynomial f(z) =

τ
∏q−1
i=1 (z + wi). Expand the terms of f to get f(z) =

∑q−1
i=0 ciz

i. The constant term c0

is non-zero.

2. Compute ĥ =
∏q−1
i=0 (ĝ(αi))ci = ĝf(α). The random variable τ ensures that ĥ is a random

generator of Ĝ independent of other values.

3. Check that ĥ 6= 1. If ĥ = 1 this would mean that wj = −α for some easily identifiable
wj , at which point B would be able to solve the challenge BDHI problem directly. We
thus assume that wj 6= −α for all j = 1, . . . , q − 1.

4. Observe that it is easy for B to construct the pair
(
wi, ĥ

1/(α+wi)
)

for each i = 1, . . . , q−1.

To see this, write fi(z) = f(z)/(z + wi) =
∑q−2

j=0 djz
j , and verify that

ĥ1/(α+wi) = ĝfi(α) =

q−2∏
j=0

(
ĝ(αj)

)dj
which is easily computed from the input tuple.

5. Set u = gα (the quantity gα is provided as part of the input tuple)

In addition, algorithm B computes

Th = T c0 · T0 where T0 =

q−1∏
j=1

e(g, ĝcjα
j−1

) ∈ Gt

Observe that (T0)α =
∏q−1
j=1 e(g, ĝ

cjα
j
) = e(g, ĝf(α)−c0). Thus, if T = e(g, ĝ)1/α then

Th = T c0 · T0 = e
(
g, ĝf(α)

)1/α
= e(g, ĥ)1/α (3)

On the contrary, if T is uniform in Gt, then so is Th. We will be using the values g, ĥ, u, Th,
and the pairs (wi, ĥ

1/(α+wi)) for i = 1, . . . , q − 1 throughout the simulation.

Initialization. The selective identity game begins with A outputting the identity ID∗ ∈ Z∗p that
it intends to attack.

Setup. To generate the system parameters, algorithm B does the following:

1. Pick random a, b ∈ Z∗p under the constraint that ab = ID∗.

2. Set X = u−ag−ab and Y = u. Observe that X = g−a(α+b) and Y = gα.
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3. Compute v = e(g, ĥ).

4. Publish params = (g,X, Y, v) as the public parameters. These are valid parameters; in
particular the quantity ĥ from which v is computed is uniformly distributed in Ĝ \ {1}.
Note also that X and Y are independent of ID∗ in the adversary’s view.

We implicitly define x = −a(α+ b) and y = α so that X = gx and Y = gy. Algorithm B does
not know the value of x or y, but does know the value of x+ ay = −ab = −ID∗.

Phase 1. The adversary A issues up to qID < q private key queries, one at a time. Consider the
i-th query for the private key corresponding to public key IDi 6= ID∗. Algorithm B needs
to respond with a private key (r, ĥ1/(IDi+x+ry)) for a uniformly distributed r ∈ Zp \ { IDi+x−y }.
Algorithm B responds to the query as follows:

1. Let
(
wi, ĥ

1/(α+wi)
)

be the i-th pair constructed during the preparation step. Define

ĥi = ĥ1/(α+wi).

2. Algorithm B first constructs an r ∈ Zp satisfying (r− a)(α+wi) = IDi + x+ ry. To see
how, let us substitute the expressions for x and y and rewrite the equation as

(r − a)(α+ wi) = IDi − a(α+ b) + rα

After expanding, we see that the unknown α cancels from the equation, and we get
r = a+ IDi−ab

wi
∈ Zp, which B can evaluate.

3. Now,
(
r, ĥ

1/(r−a)
i

)
is a valid random private key for IDi for two reasons. First,

ĥ
1/(r−a)
i =

(
ĥ1/(α+wi)

)1/(r−a)
= ĥ1/(r−a)(α+wi) = ĥ1/(IDi+x+ry)

as required. Second, r is uniformly distributed among all elements in Zp for which
IDi + x + ry 6= 0 and r 6= a. This is true since wi is uniform in Zp \ {0,−α} and is

currently independent of A’s view. Algorithm B gives A the private key
(
r, ĥ

1/(r−a)
i

)
.

4. For completeness, we note that B can construct the private key for IDi such that r = a
as
(
r, ĥ1/(IDi−ID∗)

)
. Hence, the randomizer r in the private key given to A can be made

uniform among all r ∈ Zp for which IDi + x+ ry 6= 0 as required.

We point out that this procedure will fail to produce the private key for IDi = ID∗ since in
that case we get r = a in step (2) and therefore IDi + x + ry = 0. Hence, B can generate
private keys for all public keys except for ID∗.

Challenge. The adversary A outputs two messages M0,M1 ∈ Gt. Algorithm B picks a random
bit γ ∈ {0, 1} and a random ρ ∈ Z∗p. It responds with the ciphertext C∗ = (A,B,C) =(
Mγ · (Th)ρ, gρ, g−aρ

)
. Define s = ρ/α. On the one hand, if Th = e(g, ĥ)1/α we have by (3)

that
(Th)ρ = e(g, ĥ)ρ/α = e(g, ĥ)s = vs

B = gρ = Y ρ/α = Y s

C = g−aρ = g−aα(ρ/α) = g(x+ab)(ρ/α) = g(x+ID∗)(ρ/α) = Xsgs·ID
∗

It follows that in this case C∗ is a valid encryption of Mγ under ID∗, with the uniformly
distributed randomization value s = ρ/α ∈ Z∗p. On the other hand, when Th is uniform in
Gt, then, in the adversary’s view, C∗ is independent of the bit γ.
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Phase 2. The adversary A issues additional private key queries, for a total of at most qID < q.
Algorithm B responds as in Phase 1.

Guess. Finally, A outputs a guess γ′ ∈ {0, 1}. If γ = γ′ then B outputs 1, meaning T = e(g, ĝ)1/α.
Otherwise, it outputs 0, meaning T 6= e(g, ĝ)1/α.

The reduction shows that when the input tuple is sampled from PBDHI (where T = e(g, ĝ)1/α)
then Th = e(g, ĥ)1/α in which case A must satisfy |Pr[γ = γ′] − 1/2| > ε. On the other hand,
when the input tuple is sampled from RBDHI (where T is uniform in Gt) then Th is uniform and
independent in Gt in which case Pr[γ = γ′] = 1/2. Therefore, for uniform generators g, ĝ, uniform
α in Z∗p, and T uniform in Gt, we have that∣∣∣∣Pr

[
B

(
g, gα,

ĝ, ĝα, . . . , ĝ(αq), e(g, ĝ)1/α

)
= 0
]
− Pr

[
B

(
g, gα,

ĝ, ĝα, . . . , ĝ(αq), T

)
= 0
]∣∣∣∣ ≥ ∣∣∣∣12 ± ε− 1

2

∣∣∣∣ = ε

as required. This completes the proof of Theorem 5.1.

The BB2-IBE system described in this section is related to an IBE construction due to Sakai and
Kasahara [58, Sect. 3.1]. Following our work [6], Chen and Cheng [25] presented a security proof for
the Sakai-Kasahara scheme in the random-oracle model. Their proof is essentially a subset of the
security proof given in Section 5.2, and is similarly based on the q-BDHI assumption. In the system
of Sakai and Kasahara, and its adaptation by Chen and Cheng, the algorithm for generating user
private keys is deterministic. In the BB2 system, the identity-based key extraction is randomized
and this randomization is essential for the proof of security in the standard model.

5.3 Concrete Security under Generic Attacks

The q-BDHI assumption used in the proof of BB2 is a more complicated assumption than the
decision BDH assumption used for BB1. To study the assumption we can analyze its complexity in
the generic group model [64]. The results from [8, 9] imply that a generic algorithm for the q-BDHI
problem in a group of prime order p must take at least Ω( 3

√
p) time provided q3 ≤ p. When q3 > p

no generic lower bound is known for q-BDHI, and one should avoid using such large q. From here
on we always assume q3 ≤ p.

Interestingly, the best known algorithm for q-BDHI that works in all groups involves computing
discrete-log. Hence, the best generic upper bound for q-BDHI takes time O(

√
p), showing a gap

between the best known generic lower bound and the best known generic upper bound.
For special cases, better generic algorithms for q-BDHI are known. When q divides p−1, Brown

and Gallant [21] and independently Cheon [26] show that given group elements g, gα, and g(αd)

there is an algorithm than recovers α with O(
√
p/d+

√
d) exponentiations in G. Cheon [26] further

shows that, when d|p + 1, then α can be computed from g(αi), i = 0, . . . , d with O(
√
p/d + d)

exponentiations in G.
These bounds show that for the largest allowable q, namely q3 ≈ p, when q|p ± 1 the q-BDHI

problem can be solved using a generic algorithm in O( 3
√
p) exponentiations, matching the generic

lower bound from [8, 9]. For other groups it is still open whether the generic lower bound or the
algorithmic upper bound can be improved.

19



Security Implications. These generic algorithms do not imply that systems based on q-BDHI
are in any way insecure. However, one should be careful when selecting the size of G and Ĝ to
meet a specific security requirement.

• A heuristic approach, allowing one to continue to rely on the discrete-log generic hardness
Ω(
√
p) to select the size of p, is to require that p− 1 and p+ 1 have no divisor d in the range

log2 q < d ≤ q when q3 ≤ p.

• A more prudent approach is to select the size of p based on the q-BDHI generic lower bound
Ω( 3
√
p), regardless of the divisors of p− 1 and p+ 1.

Security-wise, the first approach will guard against the specific algorithms discovered in [21] and
[26], whereas the second approach will remain secure against all generic attacks, present and future,
at the prescribed security level. Efficiency-wise, for a security parameter `, the first approach
requires a group of prime order p ≥ 22` with additional constraints on the divisors of p − 1 and
p + 1, whereas the second approach requires a group order p ≥ 23` without such constraints. In
a real implementation, these differences will likely not significantly affect the choice of elliptic
curves hosting the bilinear groups, because the requirement that |G| = |Ĝ| = |Gt| > 2Ω(`) is often
dominated by the requirement that discrete-log in the finite field containing Gt have security 2`.
This is especially true when using curves with embedding degree 2. Hence, requiring p ≥ 23` instead
of p ≥ 22` will only make the second approach 3/2 times slower due to the increase in the size of the
exponents.

6 Arbitrary Length Identities

Recall that the basic IBE and HIBE schemes described in the previous sections require the identities
or identity components to be integers in Z∗p. In this section we show how to allow identities to be
arbitrary strings using hashing, and in particular show how to do this in the selective-identity model
using universal one-way hash function families, instead of collision resistance.

6.1 Arbitrary Identities From Collision Resistance

A simple way to extend the BB1-HIBE of Section 4 to handle identities ID = (I1, . . . , I`) with
Ij ∈ {0, 1}∗ (as opposed to Ij ∈ Z∗p) is to first hash each Ij using a collision resistant hash function
H : {0, 1}∗ → Z∗p prior to key generation and encryption. We can similarly extend the BB2-
IBE of Section 5 to handle arbitrary identities ID ∈ {0, 1}∗. A standard argument shows that
if the underlying IBE of HIBE scheme is selective-identity, chosen-plaintext (respectively, chosen-
ciphertext) secure, then so is the scheme with the additional hash function.

6.2 Arbitrary Identities From UOWHF Hashing

It is well known that collision-resistant hash functions can be constructed in groups where the dis-
crete logarithm problem is hard; which is clearly the case under the present assumptions. However,
in practice, it is advantageous to use faster hash constructions such as SHA-256, whose collision
resistance is heuristic. It is natural to ask whether our IBE systems can be extended to accept
arbitrary length identities using a weaker assumption than collision resistance. We observe that
a universal one-way hash family (UOWHF) of functions Hk : {0, 1}∗ → I is sufficient to trans-
form any selective-identity secure IBE with a finite identity set I into one that accepts arbitrary
identities of any length in {0, 1}∗.
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Recall that a (t′, ε′)-UOWHF [54] is a family of functions Hk : {0, 1}∗ → I with indices in K,
such that, for any randomized algorithm (A1,A2) running in time t′, it holds that:

Pr
[
Hk(x) = Hk(x

′) : (x, σ)
R← A1, k

R← K, x′ R← A2(x, k, σ)
]
< ε′

The probability is taken over the random choice of k and the random coins used by (A1,A2).
For practical purposes, it is assumed that the index k ranges in a finite set K and has a compact
representation.

Let E be an IBE system that admits identities ID ∈ I. Suppose that H = {Hk} is a (t, ε′)-
UOWHF of functions Hk : {0, 1}∗ → I indexed by k ∈ K. We construct a new IBE system E ′ that
takes arbitrary length identities ID ∈ {0, 1}∗ as follows:

SetupE ′ runs SetupE to obtain params and mk, selects a random index k ∈ K, and returns params′ =
(params, k) as public parameters and mk as master secret.

ExtractE ′(params′,mk, ID′) returns dID′ ← ExtractE(params,mk, Hk(ID
′)).

EncryptE ′(params′, ID′,M) returns EncryptE(params, ID,M) where ID = Hk(ID
′).

DecryptE ′(params′, dID′ , C) returns DecryptE(params, dID′ , C).

The following theorem shows that E ′ is a selective-identity secure IBE system. This is a conse-
quence of the fact that in the selective security model the attacker must commit to the challenge
identity before seeing the public parameters, and in particular, before seeing the hash function key
k. Consequently, the attacker cannot cause a hash collision with the challenge identity. The proof
is immediate and is omitted.

Theorem 6.1. Let E be a (t, qID, ε)-selective-identity secure IBE system (IND-sID-CPA) that admits
identities ID ∈ I. Suppose that H = {Hk} is a (t, ε′)-UOWHF of functions Hk : {0, 1}∗ → I
indexed by k ∈ K. Then, E ′ is a (t, qID, ε + ε′)-selective-identity secure IBE system that admits
identities ID′ ∈ {0, 1}∗.

We mention that the same transformation applies to HIBE systems in the selective-identity
security model. In this case the published random hash key k is used at all levels in the hierarchy.
The argument is otherwise identical.

6.3 Selective-Message Signature Schemes

For completeness, we note that each of our IBE systems, BB1 and BB2, gives a selectively secure
signature scheme (secure against adaptive chosen-message attacks) in the standard model: view
the identities as the messages, and use the key extraction as the signing algorithm. Arbitrarily
long messages can be signed by suitable use of hashing, exactly as in the IBE case. By selectively
secure signature [41], we mean that the adversary is required to announce the message on which it
intends to forge a signature, before it is given a public key that must be statistically independent
of the target message. This is analogous to the selective-identity IBE security model.

For signatures, computational (rather than decisional) versions of the assumptions are sufficient
for the security reductions. In Section 7 we describe two techniques to turn selective into adaptive
identity IBE. The same techniques can be used to turn selectively secure signatures into existentially
unforgeable signatures.
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7 Fully Secure Identity Based Encryption

Until now we only discussed selective-identity security for IBE systems where the adversary commits
ahead of time to the identity ID∗ it wants to attack. In the “full” adaptive-identity IBE semantic
security model [13] (denoted IND-ID-CPA) and its chosen-ciphertext counterpart (denoted IND-ID-
CCA2), the attacker is allowed to choose adaptively which identity to attack by specifying ID∗ in
the challenge phase rather than in the setup phase. Giving the adversary more power this way
makes it harder to construct adaptive-ID secure IBE systems, or full IBE for short.

We briefly show that any selective-ID secure IBE is also an adaptive-ID secure IBE, but the
reduction is not polynomial time. First, we note that the selective-identity security of an IBE
system is not weakened if additional restrictions on the identities are imposed (indeed, this only
tightens the constraints on the adversary and relaxes those on the simulator). Identities in the
systems of Sections 4 and 5 range natively over Z∗p, but by the preceding remark it is safe to restrict
them to the set of integers {1, . . . , 2n} for 2n < p, represented as binary strings of length n. As
noted in Section 6.1, we can then expand our IBE schemes to arbitrary identities in {0, 1}∗ by first
hashing identities using a collision resistant function with n-bit output, such as SHA-256 whose
output is 256 bits. Hence, for an appropriately large p, taking n = 256 as the length of identities
in the underlying IBE is a natural choice.

7.1 From Selective Identity To Adaptive Identity

Let thus N be the number of allowed identities in the underlying IBE, where for example N = 2256.
The reduction from selective-identity IBE to adaptive-identity IBE introduces a factor of N in
the security parameters of the system, as described in Theorem 7.1 below. Consequently, if the
IBE system has sufficiently high selective-identity security (which requires using a bilinear group of
sufficiently large size p) then the system is also a fully secure IBE with adequate security. This means
that the selective-ID secure IBE system of [22] as well as the two systems described earlier in this
paper are fully secure IBE systems in their own right, assuming we use a large enough group so that
the Decision-BDH and Decision-BDHI problems are sufficiently difficult. Extension to arbitrary
identities is done using collision-resistant hashing, in which case N must be at least 2256. We note
that collision resistance appears to be necessary to preserve adaptive-identity security, contrarily to
the case discussed in Section 6.2 where UOWHF was enough to preserve selective-identity security.

Concretely, an immediate corollary of Theorem 7.1 below is that, using 256-bits identities and
using a group where no t-time adversary can break Decision-BDH with advantage 2−384, the IBE
system of Section 4 is a (t, qID, 2

−128)-adaptive-ID secure IBE for any qID. The system can be
expanded to arbitrary identities in {0, 1}∗ by first hashing identities using a collision-resistant hash
function with a 256-bit output.

Theorem 7.1. Let E be a (t, qID, ε)-IND-sID-CPA (selective identity) secure IBE system. Suppose
E is restricted to admit N distinct identities. Then E is also a (t, qID, Nε)-IND-ID-CPA (adaptive
identity) secure IBE.

Proof. Suppose algorithm A has advantage Nε in breaking the full security of the IBE system.
We build an algorithm B that has advantage ε in breaking selective-ID security of the system.
Algorithm B works as follows:

Init. B picks a random ID∗ ∈ {0, 1}n and reveals it to the challenger as the identity that it wishes
to attack.
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Setup. The challenger gives B the public parameters for an IBE system. B forwards these param-
eters to A. Observe that, by definition of the selective-identity security model, the public
parameters generated by the challenger are distributed independently of ID∗.

Phase 1. A issues private key queries. Consider the i-th query for identity IDi. If IDi 6= ID∗,
algorithm B forwards the query to its challenger. Since the query is valid (IDi 6= ID∗), the
challenger responds with the private key for IDi which B then forwards to A. Note that the
challenger’s response is created using Extract and is therefore independent of ID∗. Thus, the
only information about ID∗ revealed by B’s response is that ID∗ 6= IDi.

In the unlikely event that IDi = ID∗, algorithm B cannot respond to this query. In this case,
B terminates the simulation, picks a random bit b′ ∈ {0, 1}, and outputs b′ as its guess for
the challenger’s bit b in the challenge phase.

Challenge. Once phase 1 is overA outputs an identity ID∗0 ∈ {0, 1}n and two equal length messages
M0,M1. Algorithm B forwards M0,M1 to its challenger and receives back the challenge
ciphertext C∗. We consider two cases:

1. If ID∗ 6= ID∗0 then algorithm B picks a random bit γ′ ∈ {0, 1}, outputs γ′ as its guess for
γ, and terminates.

2. Otherwise, ID∗ = ID∗0 in which case C∗ is a proper encryption of one of M0 or M1 under
ID∗0 as expected by A. Algorithm B gives C∗ to A and continues to Phase 2.

Phase 2. A continues to issue private-key queries. B responds as before. Since now the queries
cannot equal ID∗ these queries cannot cause B to abort.

Output. Finally, A outputs its guess γ′ ∈ {0, 1} for γ. B outputs the same γ′ as its guess for γ.

Next, we analyze B’s advantage in guessing γ. Let q1 ≤ qID < N be the number of distinct queries
that A issued during phase 1. Let success1 denote the event that during phase 1 A did not issue
a query for ID∗. Then Pr[success1] = 1 − (q1/N) since for any sequence of q1 queries from the
adversary, the probability (over the choice of ID∗) that ID∗ collides with one the queries is q1/N .
Let success denote the event that both success1 occurred and ID∗ = ID∗0. Then

Pr[success] = Pr[success1] · Pr[ID∗ = ID∗0 | success1] =
(

1− q1
N

) 1

N − q1
=

1

N

When event success happens, A’s view is identical to its view in a real attack game and therefore
|Pr[γ = γ′|success] − 1/2| ≥ Nε. Furthermore, by definition of B we have Pr[γ = γ′|success] = 1/2.
It follows that∣∣∣∣Pr[γ = γ′]− 1

2

∣∣∣∣ =

∣∣∣∣(Pr[γ = γ′|success] · Pr[success]
)

+
(

Pr[γ = γ′|success] · Pr[success]
)
− 1

2

∣∣∣∣
=

∣∣∣∣Pr[γ = γ′|success] · 1

N
+

1

2
· N − 1

N
− 1

2

∣∣∣∣ =

∣∣∣∣Pr[γ = γ′|success]− 1

2

∣∣∣∣ · 1

N
≥ ε

as required. This completes the proof of Theorem 7.1.
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The Hierarchical Case. Theorem 7.1 has an immediate corollary for HIBE systems, which
follows from the same proof. Here, the loss factor N is the total number of identities throughout
the hierarchy.

Corollary 7.2. Let E be a (t, qID, ε)-IND-sID-CPA (selective-identity) secure HIBE system. Suppose
E admits N distinct identities across the entire hierarchy. Then E is also a (t, qID, Nε)-IND-ID-CPA
(adaptive-identity) secure HIBE system.

In general N will grow exponentially with the depth of the hierarchy and therefore Corollary 7.2
is most useful when the hierarchy is shallow or when the hierarchy is sparsely populated.

Theorem 7.1 and Corollary 7.2 are tight. One can give a simple example of a system that has
1/N security in the selective-ID model, but is insecure in the adaptive-ID settings. For example,
the Setup algorithm can include the private key of a random identity in the public parameters.
This will only help a selective attacker with probability 1/N , but will enable an adaptive attacker
to win the security game with probability one [36].

Fully Secure BB1 and BB2 in Practice. A consequence of the preceding theorem and corol-
lary is that, with a judicious choice of parameters, one can turn any selective-ID (H)IBE scheme
(such as BB1 or BB2) into a very simple and reasonably efficient (H)IBE system with full-fledged
adaptive-ID security in the standard model.

Suppose that we seek a fully secure IND-ID-CPA IBE with security parameter λ ∈ N, thus
operating at security level 2λ, and accepting N = 2λ identities. To realize it, one takes a selective
IND-sID-CPA IBE at security level 22λ and restricts its allowable identities to a set of size 22λ/2λ =
2λ, such as {0, 1}λ. The reason why this works despite the exponential security loss factor N = 2λ,
is that such loss is exactly compensated by doubling the IND-sID-CPA security parameter of the
basic scheme (from λ to 2λ) — which for all known bilinear groups increases the computational
and representational costs by constant factors, which we calculate below.

Cost of the Transformation. Recall that, for a given family of curves, the time cost T (p, n) of
computing a pairing using Miller’s algorithms and its variations grows as:

T (p, n) = Θ((log p) · (log n)2)

where p = |G| = |Ĝ| = |Gt| is the group order and n = |F| is the size of the finite field extension in
which the target group Gt is embedded. Preventing generic discrete-log attacks in G and number-
field-sieve attacks in F in fewer than 2λ elementary operations simultaneously requires that:

2λ < Lp(1, 1/2) = 2(1/2+o(1))·(log p)

2λ < Ln(1/3, 1/c) = 2(1/c+o(1))·(logn)
1/3·(log logn)

2/3

for some constant c. Asymptotically, this can be achieved by selecting bitsizes for p and n according
to the relations:

log p ≈ 2λ and log n ≈ Θ(λ3)

Comparing the complexity of a pairing computation (or, equivalently, that of a general exponenti-
ation in F with exponent in Zp) for security parameters λ1 = λ versus λ2 = 2λ, we see that log p
must be doubled and log n must be multiplied by 8. Therefore,

T (p2, n2)/T (p1, n1) = 2 · 82 = 128
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Likewise, depending on the group, the pairing, and the elliptic-curve family on which it is realized,
the representation size of elements in G, Ĝ, or Gt will grow by a factor between

log p2/ log p1 = 2 and log n2/ log n1 = 8

In other words, operating BB1 and BB2 with full adaptive-ID security at security level 2λ,
requires a constant 128× more time, and a constant between 2× and 8× more space, than operating
the same scheme in basic selective-ID mode at the same security level 2λ. This applies for all values
of the (true, intended) security parameter λ.

Limitations. Even though the transformation above is sound and the resulting schemes secure,
the drawback of this method is that it introduces a large loss factor N in the security reduction.
To compensate we need to increase the security parameters and degrade performance.

To avoid this issue, in [7] we constructed a fully secure IBE scheme based on BB1 and whose
security reduction only carried a polynomial loss factor of Õ(qID

2), as opposed to N = 2λ in the
generic transformation; however that construction was impractical and mostly served as a proof
of concept. Subsequently, Waters [69] constructed an elegant and much more efficient adaptive-ID
generalization of BB1 with a security reduction bearing a loss factor of roughly O(qID). While that
system has large public parameters, more recent constructions are adaptive-ID secure with shorter
public parameters [37, 70].

7.2 Fully Secure IBE Using Random Oracles

For completeness we note that a random oracle H can convert a selective-identity IBE scheme E
into an adaptively secure one by the process of hashing the identity ID with H before using it. We
denote the resulting system by EH . We assume that the base system E does not use the random
oracle H.

Theorem 7.3. Let H be a hash function H : {0, 1}∗ → {0, 1}n modeled as a random oracle. Let E
be a (t, qID, ε) selective-ID secure IBE that does not call H. Suppose identities in E are n-bits long.
Then EH is a (t, qID, ε

′) adaptive-ID secure IBE (in the random oracle model) for ε′ = qH ε+(qH
2/2n)

≈ qH ε, where qH such that qID ≤ qH < 2n/2 is the maximum number of oracle calls to H that the
adversary can make (including those needed to answer private key queries).

The proof is a straightforward adaptation of the proof of Theorem 7.1 and is omitted. Note that
any collision on the hash function enables the attacker to win the IBE security game and is captured
in the term qH

2/2n. We also point out that in the proof, the random oracle is “programmed” at
only one point.

A consequence of Theorems 7.1 and 7.3 is that, using a collision-resistant function H : {0, 1}∗ →
{0, 1}n for a properly chosen n satisfying 2256 ≤ 2n � p, the same hash IBE scheme EH can be
proven secure in both the standard model and the random-oracle model. Specifically, the scheme
features (t, qID, 2

nε)-full IBE security in the standard model, which is boosted to (t, qID, qHε) when
H is viewed as a random oracle.

Hierarchical Adaptive Identity Security. A hierarchical analogue to Theorem 7.3 can be
stated, but in the HIBE case it is necessary to apply the random-oracle conversion at every level of
the hierarchy, so that the total degradation factor for an identity at level ` is a product of ` factors.
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To avoid hash collisions across levels, we compute the identity ID for the underlying HIBE from
the input identity ID′ = (I′1, ..., I

′
`) as follows:

ID =
(
I1 = H(I′1), I2 = H(I′1, I

′
2), . . . , I` = H(I′1, I

′
2, . . . , I

′
`)
)

For completeness, we state the following corollary.

Corollary 7.4. Let E be a (t, qID, ε) selective-ID secure HIBE of maximum depth `. Suppose identity
components in E are n-bits long. Let H : {0, 1}∗ → {0, 1}n be a hash function modeled as a
random oracle. Then EH is a (t, qID, ε

′) adaptive-ID secure HIBE (in the random-oracle model) for
ε′ = qH

` ε + (qH
2/2n), where qH such that qID ≤ qH < 2n/2 is the total number of oracle calls to H

that the adversary can make (including those needed to answer private key queries).

Note that security degrades exponentially in the hierarchy depth, so that only a logarithmic
number of levels can be meaningfully allowed. For a long time all HIBE constructions in the
adaptive-ID setting suffered from a similar problem. Recently, Gentry and Halevi [38] and Wa-
ters [70] presented HIBE systems for hierarchies of polynomial depth without restriction on the
number of identities.

8 Adaptive Chosen Ciphertext Security

In this section, we turn to the orthogonal issue of hardening semantically secure systems (against
chosen plaintext attacks, denoted CPA) into ones that withstand adaptive chosen ciphertext attacks
(denoted CCA2 or CCA for short). We review a number of tight reductions with and without
random oracles.

8.1 Chosen Ciphertext Security in the Standard Model

Canetti, Halevi, and Katz [22, Section 2.2] describe a general method for converting a selective-
identity IBE that is chosen-plaintext secure into one that is chosen-ciphertext secure. The method
is based on [55, 57, 47]. Since it is generic, it applies to both of our systems as well. In particular, the
method can be used to render the IBE system of Section 5 secure against chosen-ciphertext attacks.
The result is an IND-sID-CCA2 secure IBE without random oracles. However, the resulting system
is inefficient since the transformation from [22] relies on generic non-interactive zero-knowledge
(NIZK) constructions.

A much more efficient way of constructing a CCA2-secure IBE is to start from an HIBE system
such as that of Section 4. A method from Canetti, Halevi, and Katz [23] works by appending a
one-time signature to the ciphertext, which is encrypted to an identity equal to the verification
key. A variant due to Boneh and Katz [16] uses MAC instead of signatures. A direct approach
given by Boyen, Mei, and Waters [20] exploits the structure of the BB1 ciphertext to avoid MACs
and signatures altogether. All of these methods can be used to build a selective identity, chosen
ciphertext secure `-HIBE system (or `-HIB-KEM) starting from the basic BB1 selective-identity,
chosen-plaintext secure (` + 1)-HIBE scheme of Section 4. This works for any ` we choose, by
applying either of the [23, 16, 20] methods on the last element of the identity vector. In particular,
starting from a basic 2-level HIBE we obtain an efficient selective-identity, chosen-ciphertext secure
IBE without random oracles (which can then be rendered fully secure as described in the previous
section). We refer the reader to [12] and [20] for a performance analysis of these new CCA2 systems,
in comparison with previous systems such as Cramer-Shoup [29] and Kurosawa-Desmedt [46].
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8.2 Chosen Ciphertext Security in the Random Oracle Model

In the random oracle model, the hybrid construction of Fujisaki and Okamoto [33] and its tight
variant [34] can be used to turn a semantically secure public-key system into a CCA2-secure one by
substituting a random oracle for its random coins; these constructions also apply to our identity-
based systems.

8.3 A Non-Interactive CCA2-Secure Threshold Public Key System

In the IBE system of Section 4 it is easy to distribute the master key among n parties so that any t
parties can be used to derive the private key for a given identity. When applying the technique
of [23] to the resulting threshold IBE system, we obtain an efficient CCA2-secure threshold public
key system in the standard model. The full details are provided in [10]. Alternatively, we can
use the method of [20] to turn BB1 IBE specifically into a threshold public-key KEM that is more
efficient; the drawback is that the functionality we obtain is (threshold) key encapsulation (of a
random key) rather than complete encryption (of any selected plaintext). These constructions
resolve an open problem posed by Shoup and Gennaro [65].

8.4 Labeled Encryption and Labeled IBE

A feature of encryption systems that is related to chosen ciphertext security, and is often desirable
when constructing larger protocols is that of labeled encryption [65]. Essentially, in a labeled
encryption system, the encryption algorithm takes an extra argument, the label, which is a string
in {0, 1}∗, and so does the decryption algorithm. The idea is that decryption should only succeed
if the label given to the decryption algorithm matches the one used to produce the ciphertext to
decrypt. More precisely, the additional security property we require is that it be infeasible for a
polynomially bounded adversary to cause the decryption algorithm to decrypt a ciphertext that
has been encrypted using a different label.

We observe that by using the identity as a label, IBE immediately gives us labeled encryption.
Furthermore, since many protocols that require labels admit simulation proofs in which the label
is known at the beginning, selective-ID security is sufficient for this purpose. In general, by using
the last component of an identity vector as label, we can turn (`+ 1)-HIBE into a labeled `-HIBE.

9 Conclusions

We constructed two IBE systems that are secure against selective-identity attacks in the standard
model, i.e., without using random oracles.

The first scheme, BB1, is based on the standard Decision (or hash) Bilinear Diffie-Hellman
(BDH) assumption. Since its introduction in 2004, the BB1 scheme has evolved into a useful
paradigm based on which many generalizations of identity-based encryption have flourished. The
second scheme, BB2, is based on the stronger Bilinear Diffie-Hellman Inversion (BDHI) assumption.
It is slightly more efficient in some contexts and was extended to an HIBE and beyond in [19].

Both our constructions can be transformed into efficient CCA2-secure public-key systems with-
out random oracles that are almost as efficient as the Cramer-Shoup public-key system. We also
observed that any selective-ID secure IBE system implies a full adaptive-ID secure IBE system.
While the resulting security reduction is not polynomial, the parameters can be adjusted so that
the resulting system is fully secure in the standard model. If one does tolerate the use of random
oracles, then hashing identity strings is sufficient to turn any selective-ID secure (H)IBE system into
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an adaptive-ID secure one. Operated this way, the BB1 system is an efficient and highly practical
IBE system.

We conclude by noting that very recently two lattice-based IBE constructions were also shown to
secure without random oracles. Cash et al. [24] use a lattice analogue of the “bit-by-bit” mechanism
of Canetti et al. [23], while Agrawal et al. [1] use a lattice analogue of the “all-at-once” mechanism
of the BB1 system.
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A DHI and Generalized Diffie-Hellman

In Section 3.2 we defined the q-BDHI problem in a bilinear group. A closely related problem is the
q-Diffie-Hellman Inversion (q-DHI) problem: given a tuple (g, gx, g(x2), . . . , g(xq)) ∈ Gq+1 as input,
output g1/x ∈ G. Here, G need not be a bilinear group. Loosely speaking, the q-DHI assumption
states that the q-DHI problem is intractable in G. This assumption was previously used in [51]
where it was called weak Diffie-Hellman.

Many cryptographic constructions rely on the Generalized Diffie-Hellman assumption (GenDH)
for security [66, 53, 4, 48, 18]. In this section we show that the q-DHI assumption implies the
(q+1)-Generalized Diffie-Hellman assumption. Thus, constructions that rely on Generalized Diffie-
Hellman could instead rely on q-DHI which appears to be a more natural complexity assumption,
and is easier to state since the problem description does not require an oracle.
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We first review the GenDH assumption. The assumption says that, for a random generator g
of G, given ga1 , . . . , gaq in G and given all the subset products g

∏
i∈S ai ∈ G for all strict subsets

S ⊂ {1, . . . , q}, it is hard to compute ga1···aq ∈ G. Since the number of subset products is exponential
in q, access to them is provided through an oracle. For a vector ~a = (a1, . . . , aq) ∈ Zpq, define Og,~a
to be an oracle that for any strict subset S ⊂ {1, . . . , q} responds with

Og,~a(S) = g
∏
i∈S ai ∈ G.

Define the advantage of algorithm A in solving the generalized Diffie-Hellman problem to be the
probability that A is able to compute ga1···aq given access to the oracle Og,~a(S). In other words,

AdvA,q = Pr
[
AOg,~a = ga1···aq : g ← G \ {1}, ~a = (a1, . . . , aq)← (Zp)q

]
Note that the oracle only answers queries for strict subsets of {1, . . . , q}.

Definition A.1. We say that G satisfies the (t, q, ε)-Generalized Diffie-Hellman assumption if for
all t-time algorithms A we have AdvA,q < ε.

Theorem A.2. Suppose the (t, q − 1, ε)-DHI assumption holds in G. Then the (t, q, ε)-GenDH
assumption also holds in G.

Proof. Suppose A is an algorithm that has advantage ε in solving the q-GenDH problem. We
construct an algorithm B that solves (q− 1)-DHI with the same advantage ε. Algorithm B is given
g, gx, g(x2), . . . , g(xq−1) ∈ G and its goal is to compute g1/x ∈ G. Let h = g(xq−1) and y = x−1 ∈ Zp.
Then the input to B can be re-written as h, hy, h(y2), . . . , h(yq−1) ∈ G and B’s goal is to output
h(yq) = g1/x.

Algorithm B first picks q random values c1, . . . , cq ∈ Zp. It then runs algorithm A and simulates
the oracle Oh,~a for A. The vector ~a that B will use is ~a = (y + c1, . . . , y + cq). Note that B does
not know ~a explicitly since B does not have y. When A issues a query for Oh,~a(S) for some strict
subset S ⊂ {1, . . . , q} algorithm B responds as follows:

1. Define the polynomial f(z) =
∏
i∈S(z+ ci) and expand the terms to obtain f(z) =

∑|S|
i=0 biz

i.

2. Compute t =
∏|S|
i=0(h(yi))bi = hf(y). Since |S| < q all the values h(yi) in the product are

known to B.
3. By construction we know that t = h

∏
i∈S(y+ci). Algorithm B responds by setting Oh,~a(S) = t.

The responses to all of the adversary’s oracle queries are consistent with the hidden vector ~a =
(y + c1, . . . , y + cq). Therefore, eventually, A will output T = h

∏q
i=1(y+ci). Define the polynomial

f(z) =
∏q
i=1(z + ci) and expand the terms to get f(z) = zq +

∑q−1
i=0 biz

i. To conclude, B outputs

T
/ q−1∏

i=0

(h(yi))bi = h(yq)

which is the required value.

The same property as in Theorem A.2 also holds for the decision versions of the DHI and
GenDH problems. The q-DHI assumption is easier to state than the q-GenDH assumption since
there is no need for an oracle. When appropriate, constructions that depend on GenDH for security
could instead use the DHI assumption.
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