
The Decision Di�e-Hellman ProblemDan Bonehdabo@cs.stanford.eduStanford UniversityAbstractThe Decision Di�e-Hellman assumption (ddh) is a gold mine. It enables one to constructe�cient cryptographic systems with strong security properties. In this paper we survey the recentapplications of DDH as well as known results regarding its security. We describe some open problemsin this area.1 IntroductionAn important goal of cryptography is to pin down the exact complexity assumptions used by crypto-graphic protocols. Consider the Di�e-Hellman key exchange protocol [12]: Alice and Bob �x a �nitecyclic group G and a generator g. They respectively pick random a; b 2 [1; jGj] and exchange ga; gb.The secret key is gab. To totally break the protocol a passive eavesdropper, Eve, must compute theDi�e-Hellman function de�ned as: dhg(ga; gb) = gab. We say that the group G satis�es the Computa-tional Di�e-Hellman assumption (cdh) if no e�cient algorithm can compute the function dhg(x; y)in G. Precise de�nitions are given in the next section. Recent results provide some limited reductionsfrom computing discrete log to computing the Di�e-Hellman function [20, 3, 21].Unfortunately, cdh by itself is not su�cient to prove that the Di�e-Hellman protocol is usefulfor practical cryptographic purposes. Even though Eve may be unable to recover the entire secret,she may still be able to recover valuable information about it. For instance, even if cdh is true, Evemay still be able to predict %80 of the bits of gab with some con�dence. With our current state ofknowledge we are are unable to prove that, assuming cdh, no such attack exists (although we discusssome results along this line in Section 3.3). Consequently, based on cdh, one cannot simply use thebits of gab as a shared key { cdh does not guarantee that Eve cannot predict these bits.If gab is to be the basis of a shared secret key, one must bound the amount of information Eve isable to deduce about it, given ga; gb. This is formally captured by the, much stronger, Decision Di�e-Hellman assumption (ddh) (de�ned in the next section). Loosely speaking, the ddh assumption statesthat no e�cient algorithm can distinguish between the two distributions hga; gb; gabi and hga; gb; gciwhere a; b; c are chosen at random in [1; jGj]. As we shall see in Section 3.1, the ddh assumption isequivalent to the (conceptually simpler) assumption saying there is no e�cient probabilistic algorithmthat given any triplet hga; gb; gci in G3 outputs \true" if a = bc and \false" otherwise.To illustrate the importance of ddh we show how it applies to secret key exchange. We observedabove that, with our present knowledge, cdh alone does not enable one to securely use bits of gabas a shared secret | based on cdh we cannot prove that Eve cannot predict some of these bits.Nevertheless, based on cdh alone Alice and Bob can derive one unpredictable bit (known as a hard1



core bit [16]) from gab. If, given ga; gb, Eve could predict the hard core bit of gab, she could alsocompute all of gab. Hence, based on cdh alone, to exchange a k bit secret, Alice and Bob would haveto run the Di�e-Hellman protocol k times. Each time they extract one hard core bit which is provablyunpredictable by Eve. This is clearly ine�cient and undesirable1. In contrast, using ddh one can domuch better. Suppose jGj > 2n. One can prove that based on ddh it is possible to extract from asingle application of the Di�e-Hellman protocol, n=2 bits which Eve cannot distinguish from a truerandom string. This is done by hashing gab to an n=2 bit string using an application of the leftoverhash lemma as explained in Section 4.1. This is an example of how ddh can be used to signi�cantlyincrease the e�ciency of a cryptographic protocol. We point out that implemented cryptographicsystems that derive multiple bits from the Di�e-Hellman secret are implicitly relying on ddh, notcdh. Over the past several years ddh has been successfully used to simplify many cryptographicschemes. We discuss some of these in Section 4.1.1 ddh in various group familiesThe ddh assumption is very attractive. However, one must keep in mind that it is a very strongassumption (far stronger than cdh). We note that in some groups the cdh assumption is believed tobe true, yet the ddh assumption is trivially false. For example, consider the group Z�p for a prime pand generator g. The Computational Di�e-Hellman problem is believed to be hard in this group. Yet,given ga; gb one can easily deduce the Legendre symbol of gab. This observation gives an immediatemethod for distinguishing hga; gb; gabi from hga; gb; gci for random a; b; c. This simple attack explainswhy most group families in which ddh is believed to be intractable have prime order. We note thatto foil the attack it su�ces to ensure the group order not have any small prime divisors.We give some examples of groups in which ddh is believed to be intractable. It is remarkable (andsurprising) that in all these groups, the best known algorithm for ddh is a full discrete log algorithm.1. Let p = 2p1 + 1 where both p and p1 are prime. Let Qp be the subgroup of quadratic residuesin Z�p. It is a cyclic group of prime order. This family of groups is parameterized by p.2. More generally, let p = aq + 1 where both p and q are prime and q > p1=10. Let Qp;q be thesubgroup of Z�p of order q. This family of groups is parameterized by both p and q.3. Let N = pq where p; q; p�12 ; q�12 are prime. Let T be the cyclic subgroup of order (p � 1)(q �1). Although T does not have prime order, ddh is believed to be intractable. The group isparameterized by N .4. Let p be a prime and Ea;b=Fp be an elliptic curve where jEa;bj is prime. The group is parame-terized by p; a; b.5. Let p be a prime and J be a Jacobian of a hyper elliptic curve over Fp with a prime number ofreduced divisors. The group is parameterized by p and the coe�cients of the de�ning equation.1We note that if one assumes that dhg(x; y) cannot be computed by any algorithm running in time t then one cansecurely derive log t bits out of each invocation of the Di�e-Hellman protocol. This is only a minor improvement overthe single bit extraction process described above. We also note that these hard core bits are not bits of gab. Rather,they are derived from gab by viewing it as a bit string over Z2 and computing its inner product with a public randomvector over Z2 of the same length. To apply the Goldreich-Levin theorem [16] to the Di�e-Hellman function one mustmake use of tricks described in [30, Sect. 5]. 2



2 De�nitionsWe formally de�ne the notion of indistinguishable distributions and the Decision Di�e-Hellman prob-lem. Throughout the paper we use the term e�cient as short hand for probabilistic polynomial time.We use the term negligible to refer to a function �(n) which is smaller than 1=n� for all � > 0 andsu�ciently large n.Group families. A group family G is a set of �nite cyclic groups G = fGpg where p ranges over anin�nite index set. We denote by jpj the size of binary representation of p. We assume there is apolynomial time (in jpj) algorithm that given p and two elements in Gp outputs their sum.Instance generator. An Instance Generator, IG, for G is a randomized algorithm that given aninteger n (in unary), runs in polynomial time in n and outputs some random index p and agenerator g of Gp. Note that for each n, the Instance Generator induces a distribution on theset of indices p.Examples of group families were given in the previous section. The index p encodes the groupparameters. For instance, for the group of points on an elliptic curve we may let p = hp; a; bi denotethe curve Ea;b=Fp . The instance generator is used to select a random member of G of the appropriatesize. For instance, when G is the family of prime order subgroups of Z�p the instance generator, oninput n, may generate a random n-bit prime p such that (p� 1)=2 is also prime. In some cases it maymake sense to generate distributions other than uniform. For instance, one may wish to avoid primesof the form 2k + 1.De�nition 2.1 Let G = fGpg be a group family.� A cdh algorithm A for G is a probabilistic polynomial time (in jpj) algorithm satisfying, forsome �xed � > 0 and su�ciently large n:Pr [A(p; g; ga; gb) = gab] > 1n�where g is a generator of Gp. The probability is over the random choice of hp; gi according to thedistribution induced by IG(n), the random choice of a; b in the range [1; jGpj] and the randombits used by A. The group family G satis�es the cdh assumption if there is no cdh algorithmfor G .� A ddh algorithm A for G is a probabilistic polynomial time algorithm satisfying, for some �xed� > 0 and su�ciently large n:���Pr[A(p; g; ga; gb; gab) = \true"]� Pr[A(p; g; ga; gb; gc) = \true"]��� > 1n�where g is a generator of Gp. The probability is over the random choice of hp; gi according to thedistribution induced by IG(n), the random choice of a; b; c in the range [1; jGpj] and the randombits used by A. The group family G satis�es the ddh assumption if there is no ddh algorithmfor G . 3



The di�erence between the two probabilities in the de�nition of ddh is often called the advan-tage of algorithm A. The de�nition captures the notion that the distributions hp; g; ga; gb; gabi andhp; g; ga; gb; gci are computationally indistinguishable. We will occasionally refer to the related notionof statistically indistinguishable distributions, de�ned as follows:De�nition 2.2 Let fXpg and fYpg be two ensembles of probability distributions, where for each pboth Xp and Yp are de�ned over the same domain Dp. We say that the two ensembles are statisticallyindistinguishable if the statistical distance between them is negligible, i.e.Var (Xp;Yp) = Xa2Dp jXp(a)� Yp(a)j < �where � = �(jpj) is negligible.3 Known results on the security of ddhWe survey some of the evidence that adds to our con�dence in ddh. At the moment, this evidence iscircumstantial. Proving a link between ddh and a known hard problem is a critical open problem inthis area.3.1 Randomized reductionWhen studying the security of ddh one asks for the weakest assumption that implies ddh. Ideally,one would like to prove cdh implies ddh, or some other classic problem (e.g. factoring) implies ddh.At the moment these questions are open. Fortunately, one can prove that ddh is implied by a slightlyweaker assumption: perfect{ddh.perfect{ddh: Let G = fGpg be a family of �nite cyclic groups. A perfect{ddh algorithm A forG correctly decides with overwhelming probability whether a given triplet (x; y; z) 2 G3p is a properDi�e-Hellman triplet. That is, for large enough n we havePr[A(p; g; ga; gb; gc) = \true" j a = bc] > 1� �Pr[A(p; ga; gb; gc) = \true" j a 6= bc] < �where the probability is taken over the random bits of A, the random choice of a; b; c 2 [1; jGpj], andthe choice of hp; gi according to the distribution induced by IG(n). As usual, � = �(n) is a negligiblefunction. We say that G satis�es the perfect{ddh assumption if there is no polynomial time perfect{ddh algorithm. A perfect{ddh algorithm does more than a ddh algorithm. Namely, it correctlydecides whether dhg(x; y) = z for most triplets. In contrast, a ddh algorithm is only required tocorrectly decide with non-negligible advantage.Stadler [31, Prop. 1] and independently Naor and Reingold [24] showed that the two assumption,ddh and perfect{ddh, are equivalent. This conversion of an imperfect oracle into a perfect one is donevia a random reduction. We slightly strengthen the result by applying it to groups in which only anupper bound on size of the group is given, rather than the exact order. This is useful when discussingddh in the group Z�N for some N = pq.Theorem 3.1 Let G = fGpg be a family of �nite cyclic groups of prime order. Let s(p) be ane�ciently computable function such that jGpj � s(p) for all p. Then G satis�es the ddh assumptionif and only if it satis�es the perfect{ddh assumption.4



Proof Sketch The fact that the ddh assumption implies perfect{ddh is trivial. We prove theconverse. Let O be a ddh oracle. That is, there exists an � > 0 such that for large enough n,���Pr[O(p; g; ga; gb; gab) = \true"]� Pr[O(p; g; ga; gb; gc) = \true"]��� � 1n�The probability is over the random choice of a; b; c in [1; jGpj], and the random choice of hp; gi accordingto the distribution induced by IG(n). We construct a probabilistic polynomial time (in s(p) and jpj)perfect{ddh algorithm, A, which makes use of the oracle O. Given p; g and x; y; z 2 Gp algorithmA must determine with overwhelming probability whether it is a valid Di�e-Hellman triplet or not.Consider the following statistical experiment: pick random integers u1; u2; v in the range [1; s(p)2] andconstruct the triplet (x0; y0; z0) = (xvgu1 ; ygu2 ; zvyu1xvu2gu1u2)Case 1. Suppose (x; y; z) is a valid triplet, then x = ga; y = gb; z = gab For some a; b. It followsthat (x0; y0; z0) is also a valid triplet. Furthermore, one can show that (x0; y0; z0) is chosen froma distribution which is statistically indistinguishable from the uniform distribution on properDi�e-Hellman triplets in Gp.Case 2. Suppose (x; y; z) is not a valid triplet. Then x = ga; y = gb; z = gab+c for some c 6= 0. Inthis case, x0 = ga0 ; y0 = gb0 ; z0 = ga0b0gcv . Note that since c 6= 0 we know that gc is a generatorof Gp. Consequently, the distribution of gcv is statistically indistinguishable from uniform. It isnot di�cult to show that the distribution on (x0; y0; z0) is statistically indistinguishable from theuniform distribution on G3p.We see that based on whether (x; y; z) is a valid Di�e-Hellman triplet we either generate a uni-formly random valid triplet or a completely random triplet. Consequently, standard ampli�cationtechniques can be used to construct the algorithm A. We describe a simple approach. Algorithm Aperforms two experiments: it �rst generates k independent triplets (x0; y0; z0) as described above andqueries the oracle at those triplets. Let w1 be a random variable counting the number of times theoracle answers \true". In the second experiment, A generates k random triplets in G3p and queries theoracle. Let w2 be a random variable counting the number of \true" answers. Clearly, E[jw1�w2j] = 0if (x; y; z) is an invalid triplet and E[jw1�w2j] > �k otherwise. Here � = �(n) � 1=n� is the advantageproduced by the oracle O. Algorithm A outputs \true" if jw1 � w2j > �k=2 and outputs \false"otherwise. Using standard large deviation bounds one can show that when k > 1� log2 1� algorithm Aoutputs the right answer with probability at least 1� �. �Observe that the only place where we use the fact that the group order is prime is in arguing thatgc is a generator of Gp. This fact remains true, with high probability over the choice of c, as long as thesmallest prime divisor of the group order is su�ciently large. Hence the theorem also applies in anygroup family G in which the smallest prime divisor of jGpj is super-polynomial in jpj. in particular, itapplies to the group of quadratic residues in Z�N when N = pq and p = 2p1 + 1 and q = 2q1 + 1 forsome large primes p; q; p1; q1.A random reduction such as Theorem 3.1 is an important part of any hardness assumption. Es-sentially, it shows that assuming one cannot decide the Di�e-Hellman problem with overwhelmingprobability then one cannot decide it in any non-negligible fraction of the input space.5



3.2 Generic algorithmsNechaev [26] and Shoup [30] describe models enabling one to argue about lower bounds on computa-tions of discrete log as well as ddh. We use Shoup's terminology.To disprove ddh one may �rst try to come up with a ddh algorithm that works in all groups.Indeed, such an algorithm would be devastating. However, the best known generic algorithm for ddhis a generic discrete log algorithm, namely the Baby-Step-Giant-Step [9]. When applied in a group ofprime order p this algorithm runs in time O�(pp). Shoup shows that this is the best possible genericalgorithm for ddh. We discuss the implications of this result at the end of the section.De�nition 3.1 (Shoup)An encoding function on the additive group Z+p is an injective map � : Zp ! f0; 1gn for someinteger n > 0.A generic algorithm A for Z+p is a probabilistic algorithm that takes as input an encoding list(�(x1); : : : ; �(xk)) where � is an encoding function and xi 2 Z+p . During its execution, thealgorithm may query an oracle by giving it two indices i; j into the encoding list and a sign bit.The oracle returns the encoding �(xi � xj) according to the sign bit. This new encoding is thenadded to the encoding list. Eventually, the algorithm terminates and produces a certain output.The output is denoted by A(�;x1; : : : ; xk).To illustrate these concepts we describe two encodings of Z+p . Let q be a prime with p dividingq � 1. Let g 2 Z�q have order p. Then � de�ned by �(a) = ga mod q is an encoding of Z+p inside Z�q.Another encoding could be de�ned using an elliptic curve over Fq with p points. Let P be a pointson the curve. Then �(a) = aP is another encoding of Z+p . As an example of a generic algorithm wementioned the Baby-Step-Giant-Step algorithm for discrete log. On the other hand, the index calculusmethod for computing discrete log is not generic. It takes advantage of the encoding of group elementsas integers.Shoup proved a number of lower bounds on generic algorithms. These include lower bounds oncomputing discrete log, computing Di�e-Hellman, deciding Di�e-Hellman and a few others. Here, weare most interested in the lower bound on deciding Di�e-Hellman.Theorem 3.2 (Shoup) Let p be a prime and S � f0; 1g� a set of at least p binary strings. Let A bea generic algorithm for Z+p that makes at most m oracle queries. Let a; b; c 2 Z+p be chosen at random,let � : Z+p ! S be a random encoding function, and let s be a random bit. Set w0 = ab and w1 = c.Then ����Pr[A(�; 1; a; b; ws; w1�s) = s]� 12 ���� < m2=pwhere the probability is over the random choice of a; b; c in [1; p], the random encoding � and therandom bits used by the algorithm.Proof Sketch We bound the amount of information available to the algorithm after m queries.Each time the algorithm interacts with the oracle it learns the encoding �(xi) of some xi 2 Z+p . Onecan easily see that xi = Fi(a; b; c; ab) where Fi is a linear function that can be easily deduced byexamining the oracle's previous queries. Suppose that for all i; j such that Fi 6= Fj one has that�(xi) 6= �(xj). This means the algorithm learned the random encoding of distinct values. Since thesevalues are independent random bit strings they provide no information to the algorithm.6



The only way the algorithm obtains any information is if for some i; j with Fi 6= Fj we have that�(xi) = �(xj). In this case the algorithm may learn a linear relation on the values a; b; c; ab. Wegive the algorithm the bene�t of the doubt, and say that if it is able to �nd such an Fi; Fj then it isable to produce the correct output. Hence, to bound the success probability, it su�ces to bound theprobability that given arbitrary distinct m linear polynomials and random a; b; c; ab 2 Zp there existsan i 6= j such that Fi(a; b; c; ab) = Fj(a; b; c; ab). Let R be this event. We bound Pr[R]. For a givenFi 6= Fj the number of solutions to Fi(x; y; z; xy) = Fj(x; y; z; xy) can be bounded by considering thepolynomial G(x; y; z) = Fi�Fj . This is a polynomial of total degree 2. Consequently, the probabilitythat a random (x; y; z) 2 Z3p is a zero of G is bounded by 2=p (see [29]). There are �m2 � such pairsFi; Fj to consider. Hence, the probability that a random (x; y; z; xy) is the root of some Fi � Fj isbounded by Pr[R] � �m2� � 2p < m2pThe theorem now follows. When R does not occur the algorithm can only guess the answer getting itright with probability half. The only information comes from the event R which occures with proba-bility less than m2=p. �The theorem shows that any generic algorithm whose running time is less that (pp)1�� fails tosolve ddh, with non-negligible advantage, on a random encoding of the group Z+p . It follows thatthere exists an encoding where the algorithm must fail. Hence, the theorem shows that if a genericalgorithm is to obtain a non-negligible advantage in solving ddh it must run in exponential time (inlog p). This lower bound shows there is no e�cient generic ddh algorithm that works in all groups.It is important to keep this in mind when searching for e�cient ddh algorithms. The algorithm mustmake use of the particular group encoding.Using a similar argument Maurer and Wolf [22] show that no e�cient generic algorithm can reducecdh to ddh. That is, suppose that in addition to the group action oracle, the algorithm also hasaccess to an oracle for deciding ddh (i.e. given h�(a); �(b); �(c)i the oracle returns \true" if a = bcand \false" otherwise). Then any generic algorithm given �(x); �(y) and making a total of at most moracle queries will succeed in computing �(xy) with probability at most m2=p. This is important tokeep in mind when searching for a reduction from cdh to ddh.At a �rst reading the implications of Theorem 3.2 may not be clear. To avoid any confusion wepoint out a few things the theorem does not imply.� The theorem cannot be applied to any speci�c group. That is, the theorem does not imply thatin Z�p there is no sub-exponential algorithm for ddh. In fact, we know that such an algorithmexists. Similarly, the theorem implies nothing about the group of points on an elliptic curve.� The theorem does not imply that there exists an encoding of Z+p for which ddh is true. It iscertainly possible that for every encoding there exists a ddh algorithm that takes advantage ofthat particular encoding.3.3 Security of segments of the Di�e-Hellman secretIdeally, one would like to prove that cdh implies ddh. To so, one must provide a reduction showingthat an oracle for breaking the decision problem can be used to break the computational problem.7



This is appears to be a hard open problem. Nonetheless, one may try to prove weaker results regardingthe security of Di�e-Hellman bits. Unfortunately, even proving that computing one bit of gab givenga and gb is as hard as cdh is open. Currently, the only result along these lines is due to Boneh andVenkatesan [4]. At the moment these results only apply to the group Z�p and its subgroups. We de�nethe k most signi�cant bits of an elements x 2 Z�p as the k most signi�cant bits of x when viewed asan integer in the range [0; p).Theorem 3.3 (Boneh-Venkatesan) Let p be an n-bit prime and g 2 Z�p. Let � > 0 be a �xedconstant and set k = k(n) = d�pne. Suppose there exists an expected polynomial time (in n) algorithm,A, that given p; g; ga; gb computes the k most signi�cant bits of gab. Then there is also an expectedpolynomial time algorithm that given p; g; ga; gb computes all of gab.Proof Sketch The proof relies on lattice basis reductions and the LLL algorithm [19]. Givensome ga and gb we wish to compute all of gab. To do so, we pick one random r and apply A to thepoints ga+r; gb+t for many random values of t. Consequently, we learn the most signi�cant bits ofg(a+r)b � g(a+r)t. Notice that, with su�ciently high probability, ga+r is a generator of hgi, the groupgenerated by g. Hence, g(a+r)t is a random element of hgi. The problem is now reduced to the fol-lowing: let � = g(a+r)b; we are given the most signi�cant bits of � multiplied by random elements inhgi; �nd �. To solve this problem one makes use of the LLL algorithm. This requires some work sinceone must prove that even though LLL does not produce a shortest vector, one is still able to �nd thecorrect �. Indeed, the quality of the shortest vector produced by LLL implies the plog p bound onthe number of necessary bits. To prove the result for � < 1 one makes use of Schnorr's improvementof the LLL algorithm [28]. Once � is found, recovering gab is trivial. �The result shows that under cdh there is no e�cient algorithm that computes roughly plog p bitsof the Di�e-Hellman secret. To illustrate this, one may take � = 1. In this case when p is 1024 bitslong, under cdh one cannot compute the 32 leading bits. The same result holds for the least signi�cantbits as well. The smaller the value of � the longer the running time of the reduction algorithm. Therunning time is exponential in 1=�.The result is a �rst step in arguing about the security of segments of the Di�e-Hellman secretbased on cdh. Hopefully, future results will show that fewer bits are required to reconstruct the entiresecret. Interestingly, this is the only result where the LLL algorithm is used to prove the securityof a cryptographic primitive. Usually, LLL is used to attack cryptosystems (for example, considerCoppersmith's low exponent attacks on RSA [10]).3.4 Statistical resultsAlthough we cannot give bounds on the computational complexity of ddh some results are knownon the statistical distribution of proper Di�e-Hellman triples in the group Z�p. Recently, Canetti,Friedlander and Shparlinski [7] showed that the triples (ga; gb; gab) are uniformly distributed modulop in the sense of Weyl.Let p be a prime and g a generator of Z�p. Let B be a box of size jBj = h1h2h3. That is,B = [k1; k1 + h1 � 1]� [k2; k2 + h2 � 1]� [k3; k3 + h3 � 1]where 0 � ki � k1+hi�1 � p�1. We denote by N(B) the number of Di�e-Hellman triples (ga; gb; gab)that when reduced modulo p fall in the box B. Suppose Di�e-Hellman triples were randomly scattered8



in (Zp)3. Since there are (p� 1)2 triples over all, one would expect (p� 1)2 � jBj=(p � 1)3 of these tofall inside the box. Denote the discrepancy by� = supB ����N(B)� jBjp� 1 ����Then we know [7] that this discrepancy is small.Theorem 3.4 (CFS) Let p be an n-bit prime and g a generator of Z�p. Then� � O�(p31=16) = o(p2)The result shows that Di�e-Hellman triples are close to being uniformly distributed among theboxes in Z3p. The proof is based on bounding certain exponential sums. One can give an interestinginterpretation of this result using statistical independence. For binary strings x; y; z de�ne Mk(x; y; z)to be the string obtained by concatenating the k most signi�cant bits of x to the k most signi�cant bitsof y to the k most signi�cant bits of z. Recall that the statistical distance between two distributionsP1 and P2 over f0; 1g3k is de�ned byVar(P1;P2) =Xx jP1(x)�P2(x)jCorollary 3.5 (CFS) Let p be an n-bit prime and set k = dne for some constant  < 1=48. Let gbe a generator of Z�p. De�ne the following two distributions over f0; 1g3k:� P1 is the uniform distribution among all strings in the set �Mk(ga; gb; gab)	 where a; b are in therange [1; p] and ga; gb; gab are reduced modulo p.� P2 is the uniform distribution on f0; 1g3k.Then the statistical distance between P1 and P2 is Var(P1;P2) � e�c()n where c() > 0 is a constantdepending only on .The corollary shows that given the k most signi�cant bits of ga; gb one cannot distinguish (in thestatistical sense) the k most signi�cant bits of gab from a truly random k bit string. This is quiteinteresting although it does not seem to apply to the security analysis of existing protocols. In mostprotocols the adversary learns all of ga and gb. The authors claim that a similar result holds forsubgroups of Z�p as long as the index is \not too large".4 Applications of Decision Di�e-Hellman (DDH)We briey describe some applications of ddh that show why it is so attractive to cryptographers.4.1 ElGamal encryptionLet p be a prime and g 2 Z�p. The ElGamal public key system encrypts a message m 2 Zp given apublic key ga by computing hgb; m � gabi. Here b is chosen at random in [1; ord(g)]. Decryption usingthe private key a is done by �rst computing gab and then dividing to obtain m.9



When g is a generator of Z�p the system in not semantically secure2. Some information about theplaintext is revealed. Namely, the Legendre symbol of ga; gb completely exposes the Legendre symbolof m. In case the symbol of m encodes important information, the system is insecure. This is anexample where even though the cdh assumption is believed to be true, the system leaks information.To argue that the ElGamal system is semantically secure one must rely on the ddh assumption. LetG be a group in which the ddh assumption holds and g a generator of G. Then, assuming the messagespace is restricted to G it is easy to show that the system is semantically secure under ddh. Thisfollows since given ga; gb the secret pad gab cannot be distinguished from a random group element. Itfollows that m � gab cannot be distinguished from a random group element. Consequently, given theciphertext, an attacker cannot deduce any extra information about the plaintext.To summarize, ddh is crucial for the security analysis of the ElGamal system. cdh by itself isinsu�cient. Notice that in the above argument we rely on the fact that the plaintext space is equal tothe group G. This is somewhat cumbersome since often one wishes to encrypt an n-bit string ratherthan a group element. This can be easily �xed using hashing. Suppose jGj > 2n. Then assuming ddh,the string gab has at least n bits of computational entropy [18]. Note that the bit string representinggab may be much longer. Hashing gab to an m-bit string for some m � n results in a bit-stringindistinguishable from random. Encryption can be done by xoring this m bit hashed string with theplaintext. To formally argue that this hashing results in a pseudo random string one makes use of theleftover hash lemma [18] and pairwise independent hash functions.4.2 E�cient pseudo random functionsNaor and Reingold [24] describe a beautiful application of ddh. They show how to construct acollection of e�cient pseudo random functions. Such functions can be used as the basis of manycryptographic schemes including symmetric encryption, authentication [14] and digital signatures [1].Prior to these results, existing constructions [15, 23] based on number theoretic primitives were by farless e�cient.Pseudo random functions were �rst introduced by Goldreich, Goldwasser and Micali [15]. At ahigh level, a set Fn of functions An 7! Bn is called a pseudo random function ensemble if no e�cientstatistical test can distinguish between a random function chosen in the set and a truly randomfunction, i.e. a function chosen at random from the set of all functions An 7! Bn. Here An; Bn are�nite domains. The statistical test is only given \black-box" access to the function. That is, it canask an oracle to evaluate the given function at a point of its choice, but cannot peak at the internalimplementation. We refer to [24] for the precise de�nition.Let G = fGpg be a group family. For a given value of n 2 N, the Naor-Reingold pseudo-randomfunction ensemble, Fn, is a set of functions from f0; 1gn to Gp for some p (the index p may be di�erentfor di�erent functions in the ensemble). A function in the set is parameterized by a seed s = hp; g;~aiwhere g is a generator of Gp and ~a = (a0; : : : ; an) is a vector of n + 1 random integers in the range[1; jGpj]. The value of the function at a point x = x1x2 : : : xn 2 f0; 1gn is de�ned byfp;g;~a(x) = ga0Qni=1 axiiThe distribution on the seed s is induced by the random choice of ~a and the distribution induced on2Semantic security [17] is the standard security notion for an encryption scheme. It essentially says that any informa-tion about the plaintext an eavesdropper can obtain given the ciphertext, can also be obtained without the ciphertext.10



hp; gi by IG(n).In what follows, we let Af denote the algorithm A with access to an oracle for evaluating thefunction f . The following theorem is the main result regarding the above construction.Theorem 4.1 (Naor-Reingold) Let G be a group family and let fFngn2N be the Naor-Reingoldpseudo-random function ensemble. Suppose the ddh assumption holds for G . Then for every proba-bilistic polynomial time algorithm A and su�ciently large n, we have that���Pr[Afp;g;~a(p; g) = \true"]� Pr[ARp;g;~a(p; g) = \true"]��� < �where � = �(n) is negligible. The �rst probability is taken over the choice of the seed s = hp; g;~ai.The second probability is taken over the random distribution induced on p; g by IG(n) and the randomchoice of the function Rp;g;~a among the set of all f0; 1gn 7! Gp functions.The evaluation of a function fp;g;~a(x) in the Naor-Reingold construction can be can be donevery e�ciently (compared to other constructions). Essentially, one �rst computes the product r =a0Qni=1 axii mod jGpj and then computes gr. Hence, the evaluation requires n modular multiplicationsand one exponentiation. Note that we are assuming the order of Gp is known.4.3 A cryptosystem secure against adaptive chosen ciphertext attackRecently, Cramer and Shoup [11] presented a surprising application of ddh. They describe an e�cientpublic key cryptosystem which is secure against adaptive chosen ciphertext attack. Security againstsuch a powerful attack could only be obtained previously by extremely ine�cient techniques [25, 27,13] relying on constructions for non-interactive zero-knowledge (e�cient heuristic constructions aredescribed in [33]). In light of this, it is remarkable that the ddh assumption is able to dramaticallysimplify things.An adaptive ciphertext attack is an attack where the adversary has access to a decryption oracle.The adversary is given a ciphertext C = E(M). He can then query the oracle at arbitrary inputsof his choice. The only restriction is that the queries must be di�erent than the given ciphertext C.The adversary's goal is to then deduce some information about the plaintext M with non-negligibleadvantage. To motivate this notion of security we point out that the standard semantic securitymodel [17] provides security against passive (i.e. eavesdropping) attacks. It does not provide anysecurity against an active attacker who is able to inuence the behavior of honest parties in thenetwork. In contrast, security against adaptive chosen ciphertext attacks provides security againstany active adversary.Clearly, a cryptosystem secure against an adaptive attack must be non-malleable { given C oneshould not be able to construct a C 0 such that the decryption of C and C 0 are correlated in any way.Indeed, if this were not the case, the attacker would simply query the decryption oracle at C 0 and learninformation about the decryption of C. Thus, the Cramer-Shoup cryptosystem is also non-malleable(assuming ddh). Non-malleable systems are needed in many scenarios (see [13]). For instance, tocheat in a bidding system, Alice may not need to discover Bob's bid. She may only want to o�era lower bid. Thus, if Bob encrypts his bid using a malleable system, Alice may be able to cheat bycreating the encryption of a lower bid without having to break Bob's cipher. In case Bob encrypts hisbid with a non-malleable system, this form of cheating is impossible.11



4.4 OthersThe ddh assumption is used in many other papers as well. We very briey mention four (see also thesummary in [24]). Recently, Canetti [6] described a simple construction based on ddh for a primitivecalled \Oracle Hashing". These are hash functions that let one test that b = h(a), but given b alone,they reveal no information about a. Bellare and Micali [2] use ddh to construct a non-interactiveoblivious transfer protocol. Brands [5] pointed out that several suggestions for undeniable signatures [8]implicitly rely on ddh. Steiner, Tsudik and Waidner [32] show that ddh implies generalized{ddh.They consider a generalization of Di�e-Hellman enabling a group of parties to exchange a commonsecret key. For example, in the case of three parties, each party picks a random xi, they publiclycompute gxi ; gxixj for 1 � i < j � 3 and set their common secret to gx1x2x3 . This suggests ageneralization of the ddh assumption. Fortunately, Steiner, Tsudik and Waidner show that, for aconstant number of parties, ddh implies the generalized{ddh.5 Conclusions and open problemsThe Decision Di�e-Hellman assumption appears to be a very strong assumption, yet the best knownmethod for breaking it is computing discrete log. The assumption plays a central role in improvingthe performance of many cryptographic primitives. We presented the known evidence for its security.This evidence includes (1) a worst-case to average case reduction for ddh. (2) no generic algorithmcan break ddh. (3) certain pieces of the Di�e-Hellman secret are provably as hard to compute as theentire secret. (4) statistically, Di�e-Hellman triplets are uniformly distributed (in the sense of Weyl).We conclude with a list of the main open problems in this area. Progress on any of these would bemost welcome.Open problems:1. Is there an algorithm for ddh in a prime order subgroup of Z�p whose running time is betterthan the fastest discrete log algorithm in that subgroup? This is perhaps the most interestingproblem related to ddh. It is almost hard to believe that computing discrete log is the bestmethod for testing that a triplet hx; y; zi satis�es the Di�e-Hellman relation. At the momentwe are powerless to settle this question one way or another.2. Is there a group family in which ddh is implied by some \standard" cryptographic assumption,e.g. cdh, or factoring? For instance, let N = pq where p = 2p1 + 1 and q = 2q1 + 1 withp; q; p1; q1 prime. Does the ddh assumption in Z�N follow from the hardness of distinguishingquadratic residues from non residues with Jacobi symbol +1 ?3. Can one improve the results of [4] (see Section 3.3) and show that in Z�p the single most signi�cantbit of the Di�e-Hellman secret is as hard to compute as the entire secret? Also, does a similarresult to that of [4] hold in the group of points of an elliptic curve?AcknowledgmentsThe author thanks Victor Shoup for many insightful comments on an early draft of this paper.12
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