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Certificate Authorities




Web PKI

50+ Root CAs, unknown number of Sub CAs

 Most CAs can issue certs for any domain

* Known CA failures in last 2 years:
— Comodo - hacker issued bad certs
— Diginotar - hacker issued bad certs for MITM
— Trustwave - issued sub CA to customer for MITM
— Turktrust - issued sub CA by mistake, used for MITM



Can we recover from bad certs?



Revocation

* Online lookups (CRLs, OCSP)

— Slow
— Leaks browsing history
— Connection could fail (security/reliability tradeoff)

* Fresh signatures from CA (e.g. OCSP stapling)

e QOut-of-band update (software update, crlsets)
— (Chrome current crilset = ~24000 entries, ~250 KB)



Change who we trust?



DNSSEC/DANE

 DNSSEC adds key and signature records to DNS
 DANE adds records for application keys

 Considered as a PKI:

— Fewer trusted parties (ICANN root, TLD registry,
registrar, and your own DNSSEC keys)

— Builds on existing authentication relationships



DNSSEC/DANE challenges

e “Last mile” problem: getting DNSSEC to clients

— Fetching DNSSEC records over DNS has reliability
and latency problems

— Stapling needs universal deployment before a
“fail-if-absent” client policy

 DNSSEC is not widely deployed on domains
— More complex than cert requests



Change how much we have to trust
anyone?



Certificate Transparency

* Goals
— CAs publish all certificates

* Challenges
— What if they don’t?
(mistakes, hacks, intentional, etc.)

* Laurie and Langley et al, Google, started 2011
— |ETF draft in progress



Logs and Monitors

Browser Web Server



CT Part 1 — Log Signing

EEEE.




CT Part 2 — Online Log Checking

Browser Web Server



Cert Transparency Challenges

* Requires multiple high-availability logs

* Log sighatures need universal deployment
before a “fail-if-absent” policy
— But can be done by CAs

* Requires good monitoring and revocation, and
an infrequently-breached CA system



Don’t use CAs?



CAs again

Browser Web Server



Convergence

Browser Web Server



Convergence

Browser Web Server
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Trust Agility in action

Browsers "[

Monitors




Observational Trust Modes

Net Perspective: “Do you see what | see?”

Key Continuity: “Is this the same as before?”

SSH, Convergence, Perspectives, etc.

Rationale: Internet works for most people
most of the time



Convergence Challenges

* Online lookups
— Performed on first connection or key discontinuity
— Costly infrastructure
— Performance and reliability risk



Observational Trust Challenges

* Key Continuity
— Doesn’t protect initial connection
— Doesn’t handle key changes well

* Network Perspective

— Handles initial connection and key changes at cost
of online lookups

— Doesn’t handle multiple-keys-per-site well
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Can we improve observational
trust...



..with some help?
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Server Asserted Pinning

* Improves reliability (server has made a
commitment)

— Regardless of multiple-keys-per-site or key change

e Can help with initial connection / online
lookup

— Gives us longer-lived “tokens” which can be
distributed in different ways



Pins

Pin = (Name, Authentication Data, Expiration)

Authentication Data
— Public key(s)
— Opt-In (HSTS, DNSSEC, Certificate Transparency)

How are pins asserted?

How are pins distributed?



Distributing Pins

* Preloaded pins

* Key continuity



Secure Links

Web page with
secure links

Browser Web Server



Secure Links
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Secure Links

<a link-security="expiry=1357849989;
pin-sha256=YWRMYXNkZmFzZGZhc2RmcXdlcnF3ZXJxd2VycXdlcnF=;
pin-sha256=LPJNul+wow4m6DsgxbninhsWHIwfp0JecwQzYpOLmMCQ=;"
href="https://www.example.com">a secure link!</a>



Secure Links

Use current trust model on the web
e A broken link is the introducer’s fault

Build on trust in the web’s major “hubs”
e Search engines, social networks, link shorteners
Also useful for loading page resources securely

* j.e. JavaScript libraries

Feedback welcome: www.secure-links.org




Asserting Pins

* HPKP
— HTTP layer, pins to EE keys and/or CA keys

* TACK
— At TLS layer, pins to self-chosen signing key



Pin Assertion Challenges

* Risks to relying party
— Bad pins

* Risks to asserting party
— Key loss
— Key compromise

— Inflexible / impossible key changes



Pin Activation

Active period duration = MIN(30 days, current — initial)
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Pin flexibility

Ex: (K1,K2,K3,K4) = (K3,K4,K5,K6) = ...

Shifting pins could use CA or EE keys



Pin Redundancy

* Pin to multiple public keys (HPKP)
— E.g. several popular CAs and your TLS key

 Distributed backup / delegation of private key
— E.g. TACK



Summary

e Lots to think about

* Oh, and we can combine lots of these things!

— Sovereign Keys ~= transparency + pinning



Thanks!

nttp://dnssec-deployment.org

nttp://www.certificate-transparency.org

nttp://convergence.io
nttp://tack.io

nttp://tools.ietf.org/html/draft-ietf-websec
-key-pinning

https://www.eff.org/sovereign-keys

http://www.secure-links.org




