Transparency, Trust Agility, Pinning

(Recent Developments in Server Authentication)

Trevor Perrin <trevp@trevp.net>

Certificate Authorities

Web PKI

50+ Root CAs, unknown number of Sub CAs

 Most CAs can issue certs for any domain

* Known CA failures in last 2 years:
— Comodo - hacker issued bad certs
— Diginotar - hacker issued bad certs for MITM
— Trustwave - issued sub CA to customer for MITM
— Turktrust - issued sub CA by mistake, used for MITM

Can we recover from bad certs?

Revocation

* Online lookups (CRLs, OCSP)

— Slow
— Leaks browsing history
— Connection could fail (security/reliability tradeoff)

* Fresh signatures from CA (e.g. OCSP stapling)

e QOut-of-band update (software update, crlsets)
— (Chrome current crilset = ~24000 entries, ~250 KB)

Change who we trust?

DNSSEC/DANE

 DNSSEC adds key and signature records to DNS
 DANE adds records for application keys

 Considered as a PKI:

— Fewer trusted parties (ICANN root, TLD registry,
registrar, and your own DNSSEC keys)

— Builds on existing authentication relationships

DNSSEC/DANE challenges

e “Last mile” problem: getting DNSSEC to clients

— Fetching DNSSEC records over DNS has reliability
and latency problems

— Stapling needs universal deployment before a
“fail-if-absent” client policy

 DNSSEC is not widely deployed on domains
— More complex than cert requests

Change how much we have to trust
anyone?

Certificate Transparency

* Goals
— CAs publish all certificates

* Challenges
— What if they don’t?
(mistakes, hacks, intentional, etc.)

* Laurie and Langley et al, Google, started 2011
— |ETF draft in progress

Logs and Monitors

Browser Web Server

CT Part 1 — Log Signing

EEEE.

CT Part 2 — Online Log Checking

Browser Web Server

Cert Transparency Challenges

* Requires multiple high-availability logs

* Log sighatures need universal deployment
before a “fail-if-absent” policy
— But can be done by CAs

* Requires good monitoring and revocation, and
an infrequently-breached CA system

Don’t use CAs?

CAs again

Browser Web Server

Convergence

Browser Web Server

Convergence

Browser Web Server

Convergence

Network
Perspective

Trust Agility

Browser Web Server

Trust Agility in action

Browsers "[

Monitors

Observational Trust Modes

Net Perspective: “Do you see what | see?”

Key Continuity: “Is this the same as before?”

SSH, Convergence, Perspectives, etc.

Rationale: Internet works for most people
most of the time

Convergence Challenges

* Online lookups
— Performed on first connection or key discontinuity
— Costly infrastructure
— Performance and reliability risk

Observational Trust Challenges

* Key Continuity
— Doesn’t protect initial connection
— Doesn’t handle key changes well

* Network Perspective

— Handles initial connection and key changes at cost
of online lookups

— Doesn’t handle multiple-keys-per-site well

Observational Trust

Network
Perspective

Trust Agility

Key Continuity

Browser Web Server

Can we improve observational
trust...

..with some help?

Network
Perspective

Trust Agility

Key Continuity

Browser

Web Server

Server Asserted Pinning

* Improves reliability (server has made a
commitment)

— Regardless of multiple-keys-per-site or key change

e Can help with initial connection / online
lookup

— Gives us longer-lived “tokens” which can be
distributed in different ways

Pins

Pin = (Name, Authentication Data, Expiration)

Authentication Data
— Public key(s)
— Opt-In (HSTS, DNSSEC, Certificate Transparency)

How are pins asserted?

How are pins distributed?

Distributing Pins

* Preloaded pins

* Key continuity

Secure Links

Web page with
secure links

Browser Web Server

Secure Links

Web page with
secure links

Observational
Trust

Browser Web Server

Secure Links

<a link-security="expiry=1357849989;
pin-sha256=YWRMYXNkZmFzZGZhc2RmcXdlcnF3ZXJxd2VycXdlcnF=;
pin-sha256=LPJNul+wow4m6DsgxbninhsWHIwfp0JecwQzYpOLmMCQ=;"
href="https://www.example.com">a secure link!

Secure Links

Use current trust model on the web
e A broken link is the introducer’s fault

Build on trust in the web’s major “hubs”
e Search engines, social networks, link shorteners
Also useful for loading page resources securely

* j.e. JavaScript libraries

Feedback welcome: www.secure-links.org

Asserting Pins

* HPKP
— HTTP layer, pins to EE keys and/or CA keys

* TACK
— At TLS layer, pins to self-chosen signing key

Pin Assertion Challenges

* Risks to relying party
— Bad pins

* Risks to asserting party
— Key loss
— Key compromise

— Inflexible / impossible key changes

Pin Activation

Active period duration = MIN(30 days, current — initial)

|
[1

@------------ *r——»
initial current end
30 days 30 days
— D> — >
o —Ppo > o~ > ~— >
o— >
» —> >

Active periods

Pin flexibility

Ex: (K1,K2,K3,K4) = (K3,K4,K5,K6) = ...

Shifting pins could use CA or EE keys

Pin Redundancy

* Pin to multiple public keys (HPKP)
— E.g. several popular CAs and your TLS key

 Distributed backup / delegation of private key
— E.g. TACK

Summary

e Lots to think about

* Oh, and we can combine lots of these things!

— Sovereign Keys ~= transparency + pinning

Thanks!

nttp://dnssec-deployment.org

nttp://www.certificate-transparency.org

nttp://convergence.io
nttp://tack.io

nttp://tools.ietf.org/html/draft-ietf-websec
-key-pinning

https://www.eff.org/sovereign-keys

http://www.secure-links.org

